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Abstract In this study, the Atmospheric Infrared Sounder (AIRS) Observations for Model
Intercomparison Projects (Obs4MIPs) V2.1 tropospheric air temperature, specific humidity, and relative
humidity data are utilized to evaluate the global tropospheric temperature and humidity simulations in the
fully coupled global climate models from the Coupled Model Intercomparison Project phases 3, 5, and 6
(CMIP3, CMIP5, and CMIP6), and possible simulation improvement in CMIP6 models in comparison to
CMIP3 and CMIP5 models. Our analyses indicate that all three phases of CMIP models share similar
tropospheric air temperature, specific humidity, and relative humidity biases in their multi‐model ensemble
means relative to AIRS. Cold biases up to 4 K and positive relative humidity biases up to 20% are found in
the free troposphere almost globally with maxima over the mid‐latitude storm tracks. Warm biases up to 2 K
are seen over the Southern Ocean in the lower troposphere. Positive specific and relative humidity biases exist
over the off‐equatorial oceans while negative specific and relative humidity biases are seen near the equator in
the tropical free troposphere, which are related to the double‐intertropical convergence zone bias in the
models. Both the air temperature and specific humidity biases are important to the relative humidity biases
except in the tropical free troposphere where the specific humidity biases dominate. The tropospheric air
temperature, specific humidity, and relative humidity biases are reduced from CMIP3 to CMIP5 and to
CMIP6 at almost all pressure levels except at 300 hPa for specific humidity and in the boundary layer for
relative humidity.

Plain Language Summary In this study, we use the Atmospheric Infrared Sounder (AIRS) data to
assess how well the fully coupled global climate models simulate temperature and humidity in the troposphere.
We focus on the climate models from the recent three phases of Coupled Model Intercomparison Project
(CMIP3, CMIP5, and CMIP6) and investigate if there is any bias reduction in the recent CMIP6 models
compared to the earlier CMIP3 and CMIP5 models. To conduct our evaluation, we compare the CMIP model
ensemble averages with the AIRS data and find that all three phases of CMIP models exhibit similar biases in
tropospheric temperature and humidity. For example, cold biases up to 4 K and positive relative humidity biases
up to 20% are seen in the free troposphere over most regions, with the maximum biases over the midlatitudes.
Positive specific and relative humidity biases are found over the off‐equatorial oceans while negative specific
and relative humidity biases are seen near the equator in the tropical free troposphere. We also note a possible
temperature and humidity bias reduction from the CMIP3 models to the CMIP5 models and then to the CMIP6
models at most pressure levels.

1. Introduction
The Coupled Model Intercomparison Project (CMIP) (Meehl et al., 1997, 2005) collects the standardized global
climate model outputs from various global climate model groups and makes them publicly available through the
Earth SystemGrid Federation (ESGF) data centers (Cinquini et al., 2014). The main objective of CMIP is to better
understand the past, present, and future climate variations and changes arising from natural and unforced vari-
ability, and in response to changes in radiative forcing due to human activities in a multi‐model context. Started in
early 1990s, CMIP has undergone five phases and become a central component of national and international
climate change assessments over the past three decades. The global climate model outputs from the CMIP Phase 3
(CMIP3, Meehl et al., 2007), Phase 5 (CMIP5, Taylor et al., 2012), and Phase 6 (CMIP6, Eyring et al., 2016) have
formed the foundation of the Intergovernmental Panel on Climate Change (IPCC) Fourth, Fifth, and Sixth
Assessment Reports (AR4, AR5, and AR6) (IPCC, 2007, 2013, 2021), respectively.
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The Observations for Model Intercomparison Projects (Obs4MIPs) (Ferraro et al., 2015; Teixeira et al., 2014;
Waliser et al., 2020) was established in 2010 and aims to facilitate the effective utilization of satellite observations
for CMIP climate model evaluation and research. To achieve this goal, Obs4MIPs follows the following four
specific strategies: (a) It focuses on observed variables that can be directly compared to CMIP model variables.
(b) It adheres to data set formatting specifications and metadata requirements that closely align with CMIP model
outputs. (c) It provides concise technical documentation for each data set that is tailored to non‐experts and
includes information on data set uncertainty, strengths, limitations, and relevance for model evaluation. (d) It
ensures the satellite data to be easily searched and accessed alongside the climate model outputs by disseminating
the satellite data through the ESGF platforms.

The Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) is a key suite of in-
struments for measuring atmospheric temperature and humidity on NASA's Aqua satellite (Aumann et al., 2003;
Chahine et al., 2006). Since the launch of the Aqua satellite on 4 May 2002, AIRS/AMSU has provided a two‐
decade long high‐quality atmospheric temperature and humidity sounding data record that has been widely used
by the weather and climate communities. As part of the Obs4MIPs project, the AIRS Obs4MIPs data are the
AIRS/AMSU atmospheric temperature and humidity sounding data designed specifically for CMIP climate
model evaluation and research (Tian & Hearty, 2020; Tian et al., 2013a, 2019). Three versions of the AIRS
Obs4MIPs data sets have been published on the ESGF data centers for public use: V1.0 (Tian et al., 2013a), V2.0
(Tian et al., 2019), and V2.1 (Tian & Hearty, 2020). The AIRS Obs4MIPs V2.1 data are the latest version and
include the sampling‐bias‐corrected monthly mean tropospheric air temperature (ta), specific humidity (hus), and
relative humidity (hur) profiles from September 2002 to September 2016 (Tian & Hearty, 2020). The AIRS
Obs4MIPs V2.1 data have accounted for the sampling difference among the AIRS data, reanalysis data, and
climate model outputs to make the AIRS Obs4MIPs V2.1 data, reanalysis data, and climate model outputs more
directly comparable, and should be used for CMIP climate model evaluation and research (Tian & Hearty, 2020).

Previous studies have used the AIRS tropospheric air temperature and humidity data to evaluate the tropospheric
temperature and humidity biases in the CMIP3 and CMIP5 models and have well demonstrated the scientific
value of the AIRS tropospheric air temperature and humidity data in climate model evaluation (e.g., Fasullo &
Trenberth, 2012; Gettelman et al., 2006; Jiang et al., 2012; John & Soden, 2007; Pierce et al., 2006; Su et al., 2014;
Takahashi et al., 2013; Tian, 2015; Tian et al., 2013a). For example, Gettelman et al. (2006) compared the AIRS
Version 3 (V3) Level‐2 (L2) relative humidity data to a simulation from the Community Atmosphere Model
version 3 (CAM3) and found that the CAM3 model reproduces realistic mean relative humidity distributions in
comparison to AIRS but is slightly more moist than AIRS in the middle and upper troposphere. The CAM3model
also has difficulties reproducing many scales of AIRS observed relative humidity variability, particularly in the
tropics. Pierce et al. (2006) and John and Soden (2007) compared the AIRS Version 4 (V4) Level 3 (L3) and
reanalysis specific humidity profiles to those simulated from the CMIP3 models. They found that most CMIP3
models have a large moist bias in the free troposphere (more than 100%) especially over the extratropics, but a dry
bias in the boundary layer (up to 25%) over the tropics. John and Soden (2007) also compared the AIRS V4 L3 and
reanalysis tropospheric air temperature profiles to those simulated from the CMIP3 models. They found that the
CMIP3 simulated temperatures are systematically colder than the observations by 1–2 K throughout the tropo-
sphere. This cold bias generally increases with altitude in the free troposphere, with maxima located near 200 hPa
in the extratropics. The inter‐model spread of the cold and moist biases in the CMIP3 models is also large (John &
Soden, 2007). Tian et al. (2013a) evaluated the long‐term mean tropospheric air temperature and specific hu-
midity simulations in the CMIP5 models using the AIRS Obs4MIPs V1.0 data. A tropospheric cold bias of ∼2 K
and the double‐intertropical convergence zone (ITCZ) bias in the troposphere from 1000 hPa to 300 hPa were
found in the CMIP5 models. The inter‐model spread of the cold bias and the double‐ITCZ bias in the CMIP5
models is also large (Tian et al., 2013a). Tian (2015) further quantified the double‐ITCZ bias in the CMIP3 and
CMIP5 models using the AIRS specific humidity data and the Tropical Rainfall Measurement Mission (TRMM)/
Global Precipitation Climatology Project (GPCP) precipitation (pr) data and examined the connection of the
double‐ITCZ bias and the equilibrium climate sensitivity (ECS) in the CMIP3 and CMIP5 models. Tian (2015)
found that the spatial patterns of the mid‐tropospheric specific humidity and surface precipitation are similar over
the tropical Pacific, and both are related to the double‐ITCZ biases in the CMIP3 and CMIP5 models. Tian (2015)
proposed a tropical mid‐tropospheric humidity asymmetry index like the tropical precipitation asymmetry index
to quantify the double‐ITCZ bias and demonstrated that both the tropical mid‐tropospheric humidity asymmetry
index and the southern ITCZ index are linearly correlated to the ECS and are emergent constraints for ECS in the
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CMIP3 and CMIP5 models. This indicates that the AIRS specific humidity data can help constrain model ECS
and improve future climate projections. Su et al. (2014) evaluated the relative humidity simulations in the CMIP5
models using the AIRS Version 6 (V6) L3 data and found that the close interaction between the large‐scale
circulation and clouds is important for cloud feedback and climate sensitivity.

Tropospheric temperature and humidity biases are also expected in the CMIP6 models and thus need to be
identified, quantified, and understood. However, very few studies have so far worked on this issue (Bock
et al., 2020; Jiang et al., 2021). For example, Bock et al. (2020) quantified the tropospheric air temperature and
specific humidity biases in the CMIP6 models using the Earth System Model Evaluation Tool (ESMValTool)
v2.0 (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020; Weigel et al., 2021) and the ERA‐Interim
reanalysis data (Dee et al., 2011). They found some improvements in zonally averaged air temperature and
specific humidity simulations moving from the CMIP3 or CMIP5 models to the CMIP6 models. However, they
did not examine the bias spatial patterns at different pressure levels, did not examine the relative humidity, and did
not use the AIRS Obs4MIPs V2.1 data. Jiang et al. (2021) assessed the representation of clouds and water vapor
structures in 28 CMIP6 models using NASA satellite data and found measurable improvements in the CMIP6
models relative to the CMIP5 models for both clouds and water vapor. However, their results focus on the tropical
oceans only and use the AIRS V6 L3 data instead of the AIRS Obs4MIPs V2.1 data.

To the best of our knowledge, global tropospheric air temperature, specific humidity, and relative humidity biases
in the CMIP6 models and the possible reductions of these biases from the CMIP3 or CMIP5 models to the CMIP6
models have not been systematically characterized, especially based on the AIRS Obs4MIPs V2.1 data. The
objective of this study is to utilize the AIRS Obs4MIPs V2.1 data to evaluate the representation of global
tropospheric air temperature, specific humidity, and relative humidity in the fully coupled global climate models
that participated in the most recent three CMIP phases, namely CMIP3, CMIP5, and CMIP6, and to identify
potential simulation improvement or bias reduction in the CMIP6 models compared to the CMIP3 and CMIP5
models. By conducting this comprehensive analysis across the three physical variables (air temperature, specific
humidity, and relative humidity) and the three model generations (CMIP3, CMIP5, and CMIP6), we aim to
provide insights into the strengths and weaknesses of the CMIP models in representing global tropospheric
thermodynamics. The remainder of this paper is structured as follows. In Section 2, we provide a comprehensive
overview of the data and methodology employed. Section 3 presents the main results, and a summary is provided
in Section 4.

2. Data and Methodology
2.1. Satellite and Reanalysis Data

AIRS/AMSU is the NASA's atmospheric temperature and humidity sounding instrument suite on the Aqua
satellite launched on 4 May 2002 (Aumann et al., 2003; Chahine et al., 2006). The AIRS and AMSU instruments
are co‐aligned cross‐track scanning nadir sounders. Their combined operations began on 31 August 2002 and
ended when the AMSU‐A2 instrument stopped working on 24 September 2016. The AIRS instrument is a 2378‐
channel infrared grating spectrometer at wavelengths in the range 3.7–15.4 μm with a horizontal resolution of
about 13.5 km at nadir (Aumann et al., 2003). The AMSU instrument is a 15‐channel microwave radiometer with
a horizontal resolution of about 45 km at nadir (Lambrigtsen, 2003). These infrared and microwave wavelengths
are sensitive to atmospheric air temperature in the troposphere and stratosphere and specific humidity in the
troposphere as well as clouds, precipitation, minor gases, and surface properties. The AIRS/AMSU retrieval
algorithm uses an iterative least squares physical inversion method and a set of one AMSU microwave spectrum
and nine associated AIRS infrared spectra, referred to as Level‐1 (L1) products, for geophysical quantity re-
trievals (Susskind et al., 2014). The resulting AIRS/AMSU atmospheric air temperature and specific humidity are
referred to as L2 products and have a temporal resolution of twice daily, a horizontal resolution of 45 km at nadir,
and a vertical resolution of about 1 km for air temperature and 2 km for specific humidity (Susskind et al., 2003).
The AIRS/AMSU atmospheric air temperature and specific humidity profiles have a near global coverage every
day for cloud cover up to about 70% (Susskind et al., 2014). Their uncertainties are 1 K in 1‐km layers for air
temperature and 15% of mean specific humidity in 2‐km layers for specific humidity and have been confirmed
empirically through validation studies (Divakarla et al., 2006; Gettelman et al., 2004; Tobin et al., 2006). The
AIRS/AMSU atmospheric relative humidity is a derived quantity based on the AIRS/AMSU retrieved atmo-
spheric air temperature and specific humidity (Olsen et al., 2013). The relative humidity is calculated as the ratio
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of atmospheric specific humidity and saturation specific humidity, equivalent to the ratio of water vapor pressure
and saturation pressure, while the water vapor saturation pressure is calculated based on the retrieved atmospheric
air temperature over equilibrium phase (liquid above 273.15 K and ice below 273.16 K) using the formula from
Murphy and Koop (2005). The AIRS L3 data products are regularly averaged and gridded L2 swath products on
global 1° × 1° latitude‐longitude grids, at specified vertical pressure levels, and at specified daily or monthly
temporal resolutions (Tian et al., 2013b).

The AIRS Obs4MIPs data are AIRS/AMSU L3 atmospheric temperature and humidity sounding data designed
specifically for CMIP climate model evaluation and research (Tian & Hearty, 2020; Tian et al., 2013a, 2019).
Three versions of the AIRS Obs4MIPs data sets have been generated and published on the ESGF data centers for
public use: V1.0 (Tian et al., 2013a), V2.0 (Tian et al., 2019), and V2.1 (Tian & Hearty, 2020). These three
versions of AIRS Obs4MIPs data sets share the common characteristics of a monthly mean temporal resolution, a
global spatial resolution of 1°‐longitude by 1°‐latitude, and available on the eight CMIP mandatory vertical
pressure levels ranging from 1000 hPa to 300 hPa (e.g., 1000, 925, 850, 700, 600, 500, 400, and 300 hPa).
However, these three versions differ in terms of the variables provided, the time periods covered, and whether the
sampling biases are corrected or not. The AIRS Obs4MIPs V1.0 data are based on the AIRS Version 5 (V5) L3
standard monthly AIRS/AMSU combined retrieval products and published in September 2011 (Tian
et al., 2013a). They consist of monthly mean tropospheric air temperature (ta) and specific humidity (hus) profiles
from September 2002 to May 2011. The AIRS Obs4MIPs V2.0 data were published in April 2018 and encompass
monthly mean tropospheric air temperature (ta), specific humidity (hus), and relative humidity (hur) profiles
spanning September 2002 to September 2016 (Tian et al., 2019). They are based on the AIRS V6 L3 standard
monthly products in the “TqJoint” grids from the AIRS/AMSU combined retrievals. The V2.0 data added relative
humidity (hur) and extended the time coverage of the AIRS Obs4MIPs data. The AIRS Obs4MIPs V2.1 data are
the latest version and were published in August 2020. They include the sampling‐bias‐corrected monthly mean
tropospheric air temperature (ta), specific humidity (hus), and relative humidity (hur) profiles from September
2002 to September 2016 (Tian & Hearty, 2020). A significant improvement in V2.1 relative to V2.0 is the
removal of sampling biases in the AIRS Obs4MIPs V2.0 data. Due to the limitations of the Aqua satellite orbit
(limited swath width and limited sampling of the diurnal cycle and synoptic events) and the AIRS retrieval al-
gorithm (e.g., reduced sample in cloudy regions), large sampling biases exist in the AIRS Obs4MIPs V2.0 data
(Tian et al., 2019). These sampling biases were estimated using the method of Hearty et al. (2014) and the fifth
generation of the European Centre for Medium‐Range Weather Forecasts (ECMWF) (ERA5) reanalysis
(Hersbach et al., 2020), and removed from the AIRS Obs4MIPs V2.0 data to produce the sampling‐bias‐corrected
AIRS Obs4MIPs V2.1 data (Tian & Hearty, 2020). As a result, the AIRS Obs4MIPs V2.1 data have accounted for
the sampling difference among the AIRS data, reanalysis data, and climate model outputs to make the AIRS
Obs4MIPs V2.1 data, reanalysis data, and climate model outputs directly comparable and should be used in CMIP
climate model evaluation and research (Tian & Hearty, 2020).

Our previous studies (Hearty et al., 2014; Tian & Hearty, 2020; Tian et al., 2013a) have indicated that differences
still exist between the AIRS Obs4MIPs V2.1 data and the reanalysis data, even after accounting for the sampling
difference between the AIRS and reanalysis data. These differences are due to either errors in the AIRS data from
their retrieval algorithm, or errors in the reanalysis data from their data assimilation systems. Thus, as a cross‐
check or validation of the AIRS Obs4MIPs V2.1 data, we also consider two state‐of‐the‐art reanalyses: the
fifth generation European Centre for Medium‐Range Weather Forecasts (ECMWF) reanalysis (ERA5) and the
Modern‐Era Retrospective Analysis for Research and Application, Version 2 (MERRA‐2). ERA5 is produced by
ECMWF using the Integrated Forecasting System (IFS) Cycle 41r2 and available from 1979 to present on 37
pressure levels from 1000 hPa to 1 hPa and on a regular 0.25° longitude and latitude grid (Hersbach et al., 2020).
MERRA‐2 is the latest modern satellite era atmospheric reanalysis produced by NASA's Global Modeling and
Assimilation Office (GMAO) and available on 42 pressure levels from 1000 to 0.1 hPa and on a regular 0.5°
latitude by 0.625° longitude grid (Gelaro et al., 2017).

Please note that the AIRS Obs4MIPs data are derived from the AIRS L1 radiances and both ERA5 andMERRA‐2
have assimilated the AIRS L1 radiances. Thus, ERA5, MERRA‐2, and AIRS Obs4MIPs data are not “totally
independent” with each other. However, there are so many differences in these three data sets after the AIRS
radiances, especially the ERA5 andMERRA‐2 depend on numerical models to provide information and use many
other observations, these three data sets are unique and different.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040536

TIAN ET AL. 4 of 25

 21698996, 2024, 15, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040536 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [05/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2. CMIP Model Data

Monthly mean air temperature (ta), specific humidity (hus), and relative humidity (hur) outputs from the
“twentieth century” (CMIP3) or “historical” (CMIP5 and CMIP6) experiments of 91 fully coupled global climate
models that participated in CMIP3, CMIP5, and CMIP6 are used and analyzed here. These include 22 CMIP3
models, 35 CMIP5 models, and 34 CMIP6 models (Table S1 in the Supporting Information S1). Due to the
unavailability of the relative humidity outputs from two CMIP3 models (CGCM3.1(T47) and CGCM3.1(T63)),
only 20 CMIP3 models are used for relative humidity analysis. Following Tian and Dong (2020), the first
ensemble member run of variant label “r1i1p1” for the CMIP3 and CMIP5 models and “r1i1p1f1” for the CMIP6
models are used if available. Here, we analyze only the fully coupled global climate models because they are the
foundation for future climate prediction and IPCC AR. Evaluating the Atmospheric Model Intercomparison
Project (AMIP) simulations forced with observed sea surface temperatures (SSTs) (Gates et al., 1999) is also
important, but beyond the scope of the current study.

2.3. Analysis Methodology

Following Tian and Dong (2020) and Bock et al. (2020), we focus on assessing the possible progress made over
the years of the most recent three generations or phases of CMIP models by evaluating Multi‐Model Ensemble
Means (MMEMs) of the CMIP3, CMIP5, and CMIP6 models rather than trying to trace the possible progress or
improvement of specific individual CMIP3, CMIP5, and CMIP6 models. As the MMEM could be a result of
compensated biases of individual models and there is a big spread among individual models (Tian, 2015; Tian
et al., 2013a), the conclusions for the MMEMs may not necessarily be valid for individual models.

To highlight the spatial pattern and vertical structure of the tropospheric air temperature, specific humidity, and
relative humidity, we also focus on the model bias (CMIP–AIRS) maps and global statistics of the long‐term or
climatological annual means of tropospheric air temperature, specific humidity, and relative humidity at the eight
standard CMIP tropospheric pressure levels from 1000 hPa to 300 hPa. The long‐term annual means of tropo-
spheric air temperature, specific humidity, and relative humidity from AIRS, ERA5, and MERRA‐2 are calcu-
lated from September 2002 to September 2016 and those from the CMIP models are calculated based on the last
20 years of CMIP model outputs, that is, January 1980− December 1999 for CMIP3, January 1986− December
2005 for CMIP5, and January 1995− December 2014 for CMIP6. The long‐term annual means of tropospheric air
temperature, specific humidity, and relative humidity for the CMIP3, CMIP5, and CMIP6MMEMs are calculated
by averaging the long‐term annual means of tropospheric air temperature, specific humidity, and relative hu-
midity from each CMIP3, CMIP5, and CMIP6 models. AIRS, reanalysis, and CMIP model data have different
atmospheric spatial grid resolutions (Table S1 in the Supporting Information S1). Thus, all AIRS, reanalysis, and
CMIP model data are re‐gridded onto a common spatial grid of 2.5° × 2.5° for comparisons.

3. Results
3.1. Air Temperature (ta)

The climatological annual mean tropospheric air temperature (ta, K) from AIRS over the whole globe at the eight
tropospheric pressure levels of 1000, 925, 850, 700, 600, 500, 400, and 300 hPa is shown in the first column of
Figure 1. As expected, the AIRS tropospheric air temperature data show the well‐known vertical structure and
spatial patterns of tropospheric air temperature. It decreases with both altitude (warm near the surface and cold in
the upper troposphere) and latitude (warm near the equator and cold near the poles). Local maxima are found over
the Indo‐Pacific warm pool and Amazonia at each pressure levels. The air temperature is about 300 K at the
equator and 1000 hPa and decreases to around 280 K in the polar regions at 1000 hPa and to around 240 K at the
equator and 300 hPa.

The ERA5 and MERRA‐2 tropospheric air temperature data are broadly consistent with AIRS in their vertical
structures and spatial patterns of tropospheric air temperature (not shown), with high spatial pattern (Pearson)
correlations between ERA5 (or MERRA‐2) and AIRS (r > 0.985) and small Root Mean Square Differences
(RMSDs) (<20% of the AIRS standard deviation) at all pressure levels, especially in the free troposphere above
700 hPa (Figures 2c and 2d). The differences between ERA5 and AIRS tropospheric air temperatures (also
referred to as ERA5 biases) are generally smaller than 1 K except for a few limited regions in the boundary layer
(second column of Figure 1), such as the Southern Ocean, the eastern Pacific, and the eastern Atlantic at 925 and
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1000 hPa. The global mean ERA5 tropospheric air temperature biases are smaller than 0.3 K at all pressure levels
with cold biases in the free troposphere from 500 to 700 hPa and warm biases in the upper free troposphere from
300 to 400 hPa and in the boundary layer (Figure 2a). The differences betweenMERRA‐2 and AIRS tropospheric
air temperatures (also referred to as MERRA‐2 biases) are larger than the ERA5 biases but still smaller than 1 K
over most regions and levels, except for the tropics at 300 hPa and 700 hPa, and the Southern Ocean, the Artic
Ocean, and the eastern parts of the tropical oceans in the boundary layer (third column of Figure 1). The global
mean MERRA‐2 tropospheric air temperature biases are greater in magnitude than the global mean ERA5
tropospheric air temperature biases but still mostly smaller than 0.5 K, except at the 1000 hPa, with warm biases
above the 600‐hPa level (300− 500 hPa) and cold biases below the 600‐hPa level (700− 1000 hPa) (Figure 2a).
The patterns of the differences betweenMERRA‐2 and ERA5 tropospheric air temperatures are similar to those of
the differences between MERRA‐2 and AIRS tropospheric air temperatures. The high consistency between the
ERA5 and AIRS tropospheric air temperature data and the good quality of the ERA5 data (Hersbach et al., 2020)

Figure 1. Long‐term annual mean tropospheric air temperature (ta, K) from AIRS (first column) and differences among ERA5, MERRA‐2 and AIRS tropospheric air
temperature (ERA5–AIRS, second column; MERRA‐2–AIRS, third column; MERRA‐2–ERA5, fourth column) over the globe at the eight tropospheric pressure levels
from 1000 to 300 hPa.
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indicate that the AIRS Obs4MIPs V2.1 tropospheric air temperature data are of sufficient quality and can be used
as a reference data set for climate model evaluation.

The horizontal spatial patterns and vertical structures of the long‐term annual mean tropospheric air tem-
perature from the MMEMs of the CMIP3, CMIP5, and CMIP6 models are also similar to those from AIRS
(not shown) with high spatial pattern correlations (r > 0.980) and small RMSDs (<25% of the AIRS standard
deviation) between the CMIP models and AIRS at all pressure levels (Figures 2c and 2d). Among the three
CMIP phases, the CMIP6 models have the highest spatial pattern correlations and the smallest RMSDs relative
to AIRS. This indicates a possible improvement from the CMIP3 and CMIP5 models to the CMIP6 models in
the tropospheric air temperature simulations at all pressure levels. However, the CMIP3 and CMIP5 models
have similar spatial pattern correlations and RMSDs relative to AIRS indicating the improvement from CMIP3
to CMIP5 is minor.

The global maps of the long‐term annual mean tropospheric air temperature biases from the MMEMs of the
CMIP3, CMIP5, and CMIP6 models relative to AIRS (CMIP–AIRS) are shown in Figure 3. Please note that only
the CMIP tropospheric air temperature biases with the same signs relative to both AIRS and ERA5 are shown in
Figure 3. This means that the tropospheric air temperature biases from the CMIP3, CMIP5, and CMIP6 models
shown in Figure 3 are robust whether AIRS or ERA5 is used as a reference. The magnitudes of these CMIP

Figure 2. Long‐term annual mean tropospheric air temperature (ta) global statistics including (a) bias (K), (b) standard
deviation (stddev, 1), (c) root mean square difference (RMSD, 1), and (d) spatial correlation against AIRS at the eight
tropospheric pressure levels (1000–300 hPa) from ERA5 (black dotted lines), MERRA‐2 (black dashed lines), and the multi‐
model ensemble means (MMEMs) of CMIP3 (blue dash‐dotted lines), CMIP5 (green dash‐dot‐dot‐dotted lines), and CMIP6
(red long‐dash lines) models. The stddev and RMSD at each pressure level are normalized by the AIRS stddev at that
pressure level.
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Figure 3. Long‐term annual mean tropospheric air temperature (ta) biases (CMIP–AIRS) (K) over the globe at the eight tropospheric pressure levels from the MMEMs
of CMIP3 (first column), CMIP5 (second column), and CMIP6 (third column) models. Only the CMIP tropospheric air temperature biases with the same signs relative
to both AIRS and ERA5 are shown.
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tropospheric air temperature biases can be different relative to either AIRS or ERA5, but their differences, the
same as the ERA5 tropospheric air temperature biases relative to AIRS, are mostly small as discussed above and
shown in the second column of Figure 1. The tropospheric air temperature bias spatial patterns and vertical
structures are very similar among the CMIP3, CMIP5, and CMIP6 models (r = 0.940 between CMIP3 and
CMIP5, r = 0.897 between CMIP3 and CMIP6, and r = 0.958 between CMIP5 and CMIP6). This indicates that
all three phases of CMIP models share similar tropospheric air temperature biases as discussed below. The most
prominent feature of the CMIP tropospheric air temperature biases is near‐global cold biases in the free tropo-
sphere (700− 300 hPa). Cold biases are particularly large (∼4 K) over the middle and high latitudes (south of 30°S
and north of 30°N), especially over the mid‐latitude storm tracks in the oceans. These mid‐latitude free tropo-
spheric cold biases in the CMIP models may be due to the biases in the extratropical storm tracks in the CMIP
models (e.g., Priestley et al., 2020). They are much smaller (∼1 K) over the tropics (30°S− 30°N) and have
minima (close to zero) over the subtropical Pacific, especially in the upper troposphere (400− 300 hPa). Warm
biases of∼1 K are seen over a narrow zonal belt near the Antarctic coast at 600 and 700 hPa. In the boundary layer
(1000− 850 hPa), cold biases are still prevalent over most regions, but their magnitudes are smaller than those in
the free troposphere. However, warm biases at 600 and 700 hPa become larger and their area grows wider and
moves northward as the altitude decreases from 700 to 925 hPa. As a result, warm biases of ∼2 K are found over
the Southern Ocean near the Antarctic coast and the southeastern Pacific along the coast of Peru as well as
Amazonia and subtropical South America (especially at 925 hPa). Our finding of the free tropospheric cold biases
over almost the whole globe in the CMIP3, CMIP5, and CMIP6 models is consistent with previous studies
examining the tropospheric air temperature biases in the AMIP‐I models (Gates et al., 1999), the CMIP3 models
(John & Soden, 2007), the CMIP5 models (Tian et al., 2013a), and the CMIP6 models (Bock et al., 2020). The
boundary‐layer warm biases over the Southern Ocean near Antarctica are also seen previously in the CMIP3
models (John & Soden, 2007) and in the CMIP5 models (Tian et al., 2013a). Given its consistency across studies,
this is likely a real bias for the CMIP models although the AIRS air temperature is subjected to large uncertainties
in the Southern Ocean due to cloud and ice influence.

For the three CMIP phases, the global mean tropospheric air temperature biases are all negative at all pressure
levels (Figure 2a) due to the prominent near‐global cold biases in the free troposphere discussed above (Figure 3).
They maximize (∼2 K) at 300 hPa and decrease with altitude, with a minimum (<0.5 K) at 925 hPa in the
boundary layer (Figure 2a). The decrease of the global mean tropospheric cold biases with altitude is due to the
canceling effect of the increasing spatial area of the tropospheric warm biases over the Southern Ocean as the
altitude decreases (Figure 3). In addition, the global mean tropospheric cold biases in the CMIP3 and CMIP5
models are similar, while the global mean tropospheric cold biases in the CMIP6 models are much smaller than
the those in the CMIP3 and CMIP5 models (Figure 2a). This again indicate a simulation improvement or a bias
reduction from the CMIP5 models to the CMIP6 models, but less so from the CMIP3 models to the CMIP5
models.

3.2. Specific Humidity (hus)

The long‐term annual mean tropospheric specific humidity (hus, g kg− 1) from AIRS over the whole globe at the
eight tropospheric pressure levels is shown in the first column of Figure 4. Also as expected, the AIRS tropo-
spheric specific humidity data show the well‐known horizontal and vertical patterns of tropospheric specific
humidity. It decreases with both altitude (moist near the surface and dry in the upper troposphere) and latitude
(moist near the equator and dry near the poles). The AIRS tropospheric specific humidity data also shows the
well‐known tropical moist deep convective features and the equatorial and subtropical dry descending regions as
shown by the precipitation (Tian & Dong, 2020). For example, the ITCZ, the South Pacific convergence zone
(SPCZ), the South Atlantic convergence zone (SACZ), and the equatorial Pacific cold tongue are evident in the
first column of Figure 4.

The ERA5 and MERRA‐2 tropospheric specific humidity data are also broadly consistent with the AIRS
tropospheric specific humidity data in the vertical structures and spatial patterns, with a high spatial pattern
(Pearson) correlation among AIRS, ERA5 and MERRA‐2 (r = 0.999 between AIRS and ERA5, r = 0.997 be-
tween AIRS and MERRA‐2, and r = 0.995 between ERA5 and MERRA‐2; not shown). In particular, the AIRS
and ERA5 tropospheric specific humidity data are highly consistent with each other, with very high spatial pattern
correlations (>0.997) between them at all pressure levels and very small RMSDs (<10% of the AIRS standard
deviation) at all pressure levels except for 300 hPa (Figures 5d and 5e). At 300 hPa, the relatively large RMSD
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between ERA5 and AIRS tropospheric specific humidity is only ∼20% of the AIRS standard deviation. At this
level, the ERA5 specific humidity is ∼20% larger than the AIRS specific humidity almost globally (Figure 4) and
the maximum absolute differences are located over the tropical moist deep convective regions (Figure S1 in
Supporting Information S1). As discussed later, the MERRA‐2 specific humidity is also mostly much larger than
the AIRS specific humidity at 300 hPa. This indicates that the AIRS specific humidity may have dry biases at
300 hPa. In the middle and lower troposphere from 500 hPa and down, the ERA5 tropospheric specific humidity
relative biases are smaller than 10% almost globally (Figure 4). The global mean ERA5 tropospheric specific
humidity absolute biases are smaller than 0.1 g kg− 1 at all pressure levels with positive specific humidity biases
from 300 to 600 hPa and at 925 hPa and negative specific humidity biases at 1000 hPa (Figure 5a). The global
mean ERA5 tropospheric specific humidity relative biases are smaller than 5% in the middle and lower tropo-
sphere from 500 hPa and down (Figure 5a).

The differences between MERRA‐2 and AIRS tropospheric specific humidity data are much bigger than the
differences between ERA5 and AIRS tropospheric specific humidity data (Figure 4 and Figure S1 in Supporting

Figure 4. Same as Figure 1 but for tropospheric specific humidity (hus, g kg− 1) and the differences among ERA5, MERRA‐2 and AIRS normalized by AIRS or ERA5
mean values ((ERA5–AIRS)/AIRS, second column; (MERRA‐2–AIRS)/AIRS, third column; (MERRA‐2–ERA5)/ERA5, fourth column).
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Figure 5. Long‐term annual mean tropospheric specific humidity (hus) global statistics including (a) absolute bias (g kg− 1),
(b) relative bias (%), (c) standard deviation (stddev, 1), (d) root mean square difference (RMSD, 1), and (e) spatial correlation
against AIRS at the eight tropospheric pressure levels (1000–300 hPa) from ERA5 (black dotted lines), MERRA‐2 (black
dashed lines), and the multi‐model ensemble means (MMEMs) of CMIP3 (blue dash‐dotted lines), CMIP5 (green dash‐dot‐
dot‐dotted lines), and CMIP6 (red long‐dash lines) models. The stddev and RMSD at each pressure level are normalized by
the AIRS stddev at that pressure level.
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Information S1). For example, at 300 hPa, MERRA‐2 is much moister (∼30%) than AIRS almost globally,
particularly over the tropical moist deep convective regions (over 50%; Figure 4 and Figure S1 in Supporting
Information S1). The RMSDs between the MERRA‐2 and AIRS tropospheric specific humidity are around 80%
of the AIRS standard deviation at 300 hPa (Figure 5d). As mentioned earlier, both ERA5 and MERRA‐2 are
moister than AIRS at 300 hPa, indicating that the AIRS specific humidity may have dry biases at 300 hPa.
However, MERRA‐2 is much moister than both AIRS and ERA5 at this level. The large difference between the
MERRA‐2 and AIRS (or ERA5) tropospheric specific humidity is consistent with previous studies showing
MERRA‐2 tropospheric specific humidity is biased (too moist) in the upper troposphere (Gelaro et al., 2017) and
indicates a problem of the MERRA‐2 tropospheric specific humidity data instead of the AIRS or ERA5 tropo-
spheric specific humidity data. This MERRA‐2 moist bias over the tropical moist deep convective regions is most
obvious at 300 hPa and 400 hPa but can also be found in all pressure levels in the free troposphere, though their
magnitudes and area decrease as the altitude decreases. In addition, MERRA‐2 is drier than AIRS over the
subtropical dry descending regions in the middle and lower free troposphere (500–700 hPa) and the difference
magnitudes increase as the altitude decreases. At 850 hPa, MERRA‐2 is drier than AIRS over tropical moist deep
convective regions but moister than AIRS over subtropical dry descending regions. The global mean MERRA‐2
specific humidity biases are positive in the troposphere except at 1000 hPa, and much bigger than the ERA5
specific humidity biases (Figure 5a). The spatial pattern (Pearson) correlations between the MERRA‐2 and AIRS
tropospheric specific humidity are around 0.993 and consistently lower than those between ERA5 and AIRS
tropospheric specific humidity, and the RMSDs betweenMERRA‐2 and AIRS tropospheric specific humidity are
greater than 10% of the AIRS standard deviation at almost all pressure levels and consistently larger than RMSDs
between the ERA5 and AIRS tropospheric specific humidity (Figures 5d and 5e).

It is well known that ERA5 has smaller absolute biases than MERRA‐2 partly due to the higher resolution and the
newer data assimilation system in ERA5 (Hersbach et al., 2020). The greater consistency between the ERA5 and
AIRS tropospheric specific humidity data and the good quality of the ERA5 data (Hersbach et al., 2020) indicate
that the AIRS Obs4MIPs V2.1 tropospheric specific humidity data are of sufficient quality to be used as a
reference data set for climate model evaluation. Please note that both ERA5 and MERRA‐2 have assimilated
AIRS L1 radiances. Thus, whether or not AIRS data are assimilated cannot explain the differences between ERA5
and MERRA‐2 tropospheric specific humidity.

The horizontal and vertical structures of the long‐term annual mean tropospheric specific humidity from the
MMEMs of the CMIP3, CMIP5, and CMIP6 models are similar to AIRS (not shown) with high spatial corre-
lations between the CMIP models and AIRS (r > 0.96) and small RMSDs (<40% of the AIRS standard deviation)
at all pressure levels (Figures 5d and 5e). Among the three CMIP phases, the CMIP6 models have the highest
spatial pattern correlations and the smallest RMSDs relative to AIRS while the CMIP3 models have the lowest
spatial pattern correlations and the largest RMSDs relative to AIRS at all tropospheric pressure levels except for
300 hPa (Figures 5d and 5e). This indicates a possible improvement from CMIP3 to CMIP5 and from CMIP5 to
CMIP6 in tropospheric specific humidity simulation at all tropospheric pressure levels except 300 hPa.

Global maps of the long‐term annual mean tropospheric specific humidity relative biases from theMMEMs of the
CMIP3, CMIP5, and CMIP6 models (CMIP–AIRS) are shown in Figure 6 with the absolute biases shown in
Figure S2 in Supporting Information S1. As with the CMIP model tropospheric air temperature biases shown in
Figure 3, only the robust CMIP tropospheric specific humidity biases relative to both AIRS and ERA5 are shown
in Figure 6 and Figure S2 in Supporting Information S1. Although the exact magnitudes of these CMIP tropo-
spheric specific humidity biases depends on whether AIRS or ERA5 data are used as a reference, the differences
between them are small, as discussed above and shown in the second column of Figure 4 or the first column of
Figure S1 in Supporting Information S1. Strong similarities are seen in the tropospheric specific humidity bias
horizontal patterns and vertical structures among the CMIP3, CMIP5, and CMIP6 models (r = 0.941 between
CMIP3 and CMIP5, r = 0.785 between CMIP3 and CMIP6, and r = 0.873 between CMIP5 and CMIP6). This
indicates that all three phases of CMIP models share similar tropospheric specific humidity biases that have
different signs and magnitudes depending on different regions and altitudes considered. We first discuss the
tropospheric specific humidity biases over the middle and high latitudes (poleward of 30°S and 30°N) in Figure 6.
Negative specific humidity biases predominate in the free troposphere above the 600‐hPa level (300− 500 hPa),
while mostly positive specific humidity biases are found in the lower troposphere below the 600‐hPa level
(700− 1000 hPa). The magnitudes of the negative specific humidity biases in the free troposphere above the 600‐
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hPa level (300− 500 hPa) decrease with the decreasing altitude from 300 hPa to 500 hPa and become almost zero
at 600 hPa. In contrast, the magnitudes of the positive specific humidity biases in the lower troposphere the 600‐
hPa level (700− 1000 hPa) increase as the altitude decreases from 700 hPa to 1000 hPa (Figure 6).

Figure 6. Same as Figure 3 but for the CMIP model tropospheric specific humidity (hus) relative biases ((CMIP–AIRS)/AIRS, %).
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We next discuss the CMIP tropospheric specific humidity biases over the tropics (30°S− 30°N). At 300 hPa,
positive specific humidity biases are found over the tropical North Pacific Ocean (5°− 30°N) and over the tropical
South Indian, Southeastern Pacific and South Atlantic Oceans (equator− 30°S). Near zero or small negative CMIP
specific humidity biases are seen over the equatorial North Atlantic (equator− 10°N), central America, Amazonia,
south Asia including the Bay of Bengal, the equatorial Indian Ocean, the Maritime Continent, the equatorial
Pacific, and middle and high latitudes. However, these near zero or small negative CMIP specific humidity biases
at 300 hPa depend on the reference data used: near zero biases based on AIRS and small negative biases based on
ERA5. As we discussed earlier, the AIRS specific humidity data may have their own dry biases at 300 hPa, so the
small negative CMIP specific humidity biases based on ERA5 may be more trustworthy at this level. As the
altitude decreases, the area of the CMIP positive specific humidity biases becomes smaller and narrower, and
moves further eastward over the tropical oceans, especially over the tropical Pacific. On the other hand, the area of
the negative specific humidity biases gets larger and wider, and the magnitude of the negative specific humidity
biases gets larger with the decreasing altitude. As a result, in the boundary layer (1000− 850 hPa), negative
specific humidity biases in CMIP can be seen almost everywhere except for small parts of the eastern Pacific and
eastern Atlantic Oceans with positive specific humidity biases. For the three CMIP phases, the global mean
tropospheric specific humidity biases are all positive above the 600 hPa level (300− 500 hPa) but they have
different signs for different CMIP ensembles below the 600‐hPa level (700− 1000 hPa): Negative for the CMIP3
and CMIP5 models but positive for the CMIP6 models (Figure 5a). From this information alone, it is hard to see
any significant simulation improvement or bias reduction from CMIP3 to CMIP5 to CMIP6. Our finding of the
tropospheric specific humidity biases in the CMIP3, CMIP5, and CMIP6 models against AIRS is consistent with
previous studies who have examined the tropospheric specific humidity biases in the CMIP3 models (John &
Soden, 2007; Pierce et al., 2006; Tian, 2015) and the CMIP5 models (Tian, 2015; Tian et al., 2013a).

The tropical free tropospheric (300− 700 hPa) specific humidity bias patterns (Figure 6) in the CMIP3, CMIP5,
and CMIP6 models against AIRS (and ERA5) are similar to the tropical precipitation bias pattern in the models as
demonstrated by a high correlation between the tropical precipitation biases and the tropical 400‐hPa specific
humidity biases for CMIP6 shown in Figure 7. Similar high correlations are also found at other free tropospheric
levels (300− 700 hPa) and in CMIP3 and CMIP5 models but not shown. Thus, the tropical free tropospheric
(300− 700 hPa) specific humidity biases are related to the double‐ITCZ bias in the models (Tian &Dong, 2020) as

Figure 7. A scatter plot of precipitation biases and 400‐hPa specific humidity biases in the tropics (30°S–30°N) from CMIP6
models. The tropical precipitation biases are adopted from Tian and Dong (2020).
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has been previously shown by Tian et al. (2013a) and Tian (2015). There is a clear advantage to use the three‐
dimensional AIRS tropospheric specific humidity data instead of the two‐dimensional TRMM/GPCP precipi-
tation data to identify and understand the double‐ITCZ bias in the models: the AIRS tropospheric specific hu-
midity bias can reveal vertical structure, such as the westward shift with the increasing altitude over the tropical
oceans, that cannot be seen in the TRMM/GPCP precipitation data.

3.3. Relative Humidity (hur)

The long‐term annual mean tropospheric relative humidity (hur, %) from AIRS over the whole globe at the eight
tropospheric pressure levels is shown in the first column of Figure 8. Again, as expected, the AIRS tropospheric
relative humidity data show the well‐known horizontal and vertical patterns of tropospheric relative humidity. In
the boundary layer (i.e., 925 and 1000 hPa), higher relative humidity (>70%) is found almost everywhere over the
oceans and over most land regions. In contrast, lower relative humidity (<50%) is seen over several well‐known
large land deserts, such as the Sahara and Kalahari deserts in Africa, the Arabian, Syrian, Karakum, Dasht‐e
Kavir, Taklamakan, and Gobi deserts in the Middle East and Asia, the Great Australian desert in Australia,

Figure 8. Same as Figure 1 but for relative humidity (hur, %).
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the Great Basin desert in North America, and the Patagonian desert in South America, as well as the coastal
oceans near these deserts. At the top of the boundary layer (850 hPa), relatively high relative humidity (>70%) is
found in the middle and high latitudes (poleward of 40°N and 40°S) and in the tropical moist deep convective
regions, such as the equatorial Africa, the Indo‐Pacific warm pool, Amazonia, the ITCZ, the SPCZ, and the
SACZ. Lower relative humidity (<50%) is also seen over the well‐known dry descending subtropical regions over
the eastern parts of the oceans and the western parts of the continents, such as the subtropical southeastern and
northeastern Pacific and Atlantic, the Sahara desert and the Middle East, southern Africa, and the southern Indian
Ocean (Tian & Dong, 2020). In the free troposphere, as the altitude increases from 700 to 300 hPa, the dry
subtropical regions become drier and wider and move further westward over the oceans, while the tropical moist
deep convective regions become smaller. As a result, in the upper troposphere such as 300 hPa, higher relative
humidity (>70%) is seen over the middle and high latitudes and the tropical moist deep convective regions, while
lower relative humidity (<50%) is seen over the dry subtropical regions.

The ERA5 and MERRA‐2 tropospheric relative humidity data show overall consistency with AIRS in their
horizontal and vertical structures and spatial patterns of tropospheric relative humidity with a high spatial pattern
(Pearson) correlation among them (r = 0.9779 between AIRS and ERA5, r = 0.9644 between AIRS and
MERRA‐2, and r = 0.9827 between ERA5 and MERRA‐2; not shown). However, these correlations are smaller
than those for the tropospheric air temperature and specific humidity. This is expected because both the tropo-
spheric air temperature and specific humidity biases contribute to the tropospheric relative humidity bias.

The absolute differences between the ERA5 and AIRS tropospheric relative humidity are smaller than 10% almost
everywhere (Figure 8). The global mean ERA5 tropospheric relative humidity biases are positive and smaller than
5% at all pressure levels except for 300 hPa where they are ∼6% (Figure 9a). The spatial correlations between the
ERA5 and AIRS tropospheric relative humidity are high (>0.94) at all pressure levels except 1000 hPa
(Figure 9d). This indicates that the AIRS and ERA5 tropospheric relative humidity data are highly consistent with
each other. This is expected because both the tropospheric air temperature and specific humidity data are highly
consistent between AIRS and ERA5 as we discussed in Sections 3.1 and 3.2.

The differences between the MERRA‐2 and AIRS tropospheric relative humidity data are much bigger than the
differences between the ERA5 and AIRS (Figure 8). For example, at 300 hPa, MERRA‐2 is much moister than
AIRS almost globally, particularly over the tropical moist deep convective regions. This MERRA‐2 moist bias in
relative humidity at 300 hPa is consistent with and caused by the warm bias and positive specific humidity bias in
MERRA‐2 at 300 hPa. The MERRA‐2 positive relative humidity biases over the tropical moist deep convective
regions can be found at all pressure levels in the free troposphere and their magnitudes and area decrease when
moving downward. In addition, MERRA‐2 is drier than AIRS over the subtropical dry descending regions in the
lower free troposphere (500–700 hPa) with an increasing magnitude as the altitude decreases. At 850 hPa,
MERRA‐2 is drier than AIRS over the tropical moist deep convective regions but moister than AIRS over the
subtropical dry descending regions. The global mean ERA5 and MERRA‐2 tropospheric relative humidity biases
are positive at all pressure levels with a minimum at 850 hPa and a maximum at 300 hPa (Figure 9a). In addition,
the global mean MERRA‐2 tropospheric relative humidity biases are consistently larger (∼5%) than those from
ERA5 (∼3%) at all pressure levels. This indicates the better quality of ERA5 tropospheric relative humidity data
over MERRA‐2. This is also supported by the consistent higher spatial pattern correlations and smaller RMSDs
between ERA5 and AIRS tropospheric relative humidity at all pressure levels than those between MERRA‐2 and
AIRS tropospheric relative humidity (Figures 9c and 9d). This is expected because we have found bigger biases
fromMERRA‐2 than ERA5 in both the tropospheric air temperature and specific humidity data as we discussed in
Sections 3.1 and 3.2. In addition, the MERRA‐2 tropospheric relative humidity bias pattern is very similar to the
MERRA‐2 tropospheric specific humidity bias pattern. This indicates that the MERRA‐2 tropospheric relative
humidity biases are mainly from the MERRA‐2 specific humidity biases instead of from the MERRA‐2 air
temperature biases.

Again, it is well known that ERA5 has smaller biases than MERRA‐2 partly due to the higher resolution and the
newer data assimilation system in ERA5 (Hersbach et al., 2020). Similar to the specific humidity discussed in
Section 3.2, the relatively high consistency between the ERA5 and AIRS tropospheric relative humidity data and
the good quality of the ERA5 data (Hersbach et al., 2020) indicate that the AIRS Obs4MIPs V2.1 tropospheric
relative humidity data are of sufficient quality and can be used as a reference data set for climate model evalu-
ation. Also like the specific humidity discussed in Section 3.2, the large difference between the MERRA‐2 and
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AIRS or ERA5 tropospheric relative humidity data indicates a problem of the MERRA‐2 tropospheric relative
humidity data instead of the AIRS or ERA5 tropospheric relative humidity data.

The horizontal and vertical structures of the long‐term annual mean tropospheric relative humidity from the
MMEMs of the CMIP3, CMIP5, and CMIP6 models are also similar to AIRS (not shown) with high spatial
pattern correlations between the CMIP models and AIRS (r > 0.90) at all pressure levels except for 1000 hPa
(Figure 9d). In the free troposphere, the CMIP6 models have the highest pattern correlations and the smallest
RMSDs while the CMIP3 models have the lowest pattern correlations and the largest RMSDs relative to AIRS
among the three CMIP phases (Figures 9c and 9d). This indicates a possible improvement from CMIP3 to CMIP5
and to CMIP6 in the free tropospheric relative humidity simulation. In the boundary layer, the situation is different
and complicated and there is no obvious improvement in the CMIP6 models in comparison to the CMIP3 or
CMIP5 models.

The global maps of the long‐term annual mean tropospheric relative humidity biases from the MMEMs of the
CMIP3, CMIP5, and CMIP6 models (CMIP–AIRS) are shown in Figure 10. As the CMIP model tropospheric air
temperature and specific humidity biases shown in Figures 3 and 6, only the robust CMIP tropospheric relative
humidity biases relative to both AIRS and ERA5 are shown in Figure 10. Although the exact magnitudes of these
CMIP tropospheric relative humidity biases depends on whether AIRS or ERA5 is used as a reference, the
differences between them are small as discussed above and shown in the second column of Figure 8. Like the
tropospheric air temperature and specific humidity biases discussed in Sections 3.1 and 3.2, strong similarities are
found in the tropospheric relative humidity bias horizontal and vertical structures among the CMIP3, CMIP5, and
CMIP6 models (r = 0.927 between CMIP3 and CMIP5, r = 0.769 between CMIP3 and CMIP6, and r = 0.905

Figure 9. Same as Figure 2 but for relative humidity (hur, %) from 300 to 925 hPa.
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between CMIP5 and CMIP6). This indicates that all three phases of CMIP models share similar tropospheric
relative humidity biases as described below. This is also expected because all three phases of CMIP models share
similar tropospheric air temperature and specific humidity biases as described in Sections 3.1 and 3.2.

Figure 10. Same as Figure 3 but for the CMIP model tropospheric relative humidity (hur) biases (CMIP–AIRS, %).
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In the boundary layer, the relative humidity biases are generally small (<10%) except for a few regions such as the
Arctic Ocean and the coast of Antarctica. However, the relative humidity biases are generally large (up to 20%) in
the free troposphere. The free tropospheric relative humidity biases have different signs and magnitudes in
different regions like the free tropospheric specific humidity biases. Large positive free tropospheric relative
humidity biases are found over the middle latitude oceans (poleward of 30°S and 30°N). Negative free tropo-
spheric relative humidity biases are found over the high latitudes (poleward of 70°S and 70°N) especially for
CMIP3 and CMIP5 models. In the tropics (30°S− 30°N), large positive free tropospheric relative humidity biases
are generally found over the North Pacific Ocean (5°− 30°N) and over the South Indian, Southeastern Pacific and
South Atlantic Oceans (equator− 30°S). Near zero or small negative free tropospheric relative humidity biases can
be seen over Amazonia, central America, the equatorial North Atlantic (equator− 10°N), south Asia including the
Bay of Bengal, the equatorial Indian Ocean, the Maritime Continent, the equatorial Pacific, and the middle and
high latitudes. As with tropospheric specific humidity at 300 hPa, these near zero or small negative relative
humidity biases at 300 hPa depend on the reference data used: near zero biases based on AIRS and small negative
biases based on ERA5. As we discussed earlier, the AIRS relative humidity may have dry biases at 300 hPa and,
so the small negative relative humidity CMIP biases based on ERA5 may be more trustworthy at this level. This
tropical free tropospheric relative humidity bias pattern resembles the tropical free tropospheric specific humidity
bias pattern as demonstrated by a high correlation (0.92) between the tropical specific and relative humidity biases
at 400 hPa for CMIP6 shown in Figure 11. On the other hand, the resemblance of the tropical free tropospheric
relative humidity and air temperature bias patterns is low as demonstrated by a low correlation (0.12) between the
tropical air temperature and relative humidity biases at 400 hPa for CMIP6 (Figure 11). Similar high correlations
between the tropical specific and relative humidity biases and similar low correlations between the tropical air
temperature and relative humidity biases are also found at other free tropospheric levels (300− 700 hPa) and in
CMIP3 or CMIP5 models. Thus, the tropical free tropospheric relative humidity biases should arise mainly from
the tropical free tropospheric specific humidity biases instead of the tropical free tropospheric air temperature
biases and be related to the double‐ITCZ bias in the models (Figure 6).

For all three CMIP phases, the global mean tropospheric relative humidity biases are positive at all pressure
levels. The CMIP6 models have the largest global mean tropospheric relative humidity biases while the CMIP5
models have the smallest global mean tropospheric relative humidity biases except at 1000 hPa. Thus, from this
perspective, it is hard to discern any possible improvement or bias reduction from the CMIP3 and CMIP5 models
to the CMIP6 models. Our current finding of the tropospheric relative humidity biases in the CMIP3, CMIP5, and
CMIP6 models is consistent with previous studies examining the tropospheric relative humidity biases in the
CAM3 models (Gettelman et al., 2006) and the CMIP5 models (Su et al., 2014).

Figure 11. Scatter plots of the specific and relative humidity biases (left column) and the air temperature and relative humidity biases (right column) at 400 hPa in the
tropics (30°S–30°N) from CMIP6 models.
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Given the tropospheric air temperature and specific humidity biases, the tropospheric relative humidity bias can
be estimated using the following equation:

∆RH = [RH∆(ln q)] + [RH(
cp
Rd
−

L
RvT

)∆ (lnT) ] (1)

Here, RH is relative humidity and ∆RH is relative humidity bias. T is air temperature and ∆T is air temperature
bias. q is specific humidity or water vapor mixing ratio and ∆q is specific humidity or water vapor mixing ratio
bias. cp = 1004 J K

− 1 kg− 1 is the specific heat capacity of air. L= 2.5 × 106 J kg− 1 is latent heat of vapourization.
Rd= 287 J K

− 1 kg− 1 and Rv = 461 J K
− 1 kg− 1 are specific gas constants for dry air and water vapor, respectively.

The detailed derivation of this equation can be found in Supporting Information S1 file.

To further understand the reasons of the tropospheric relative humidity biases in CMIP models, we show in
Figure 12 the tropospheric relative humidity biases in CMIP6 models estimated using Equation 1 and the
tropospheric air temperature and specific humidity biases in CMIP6 models showed in Figures 3 and 6. Similar
results are found in CMIP3 and CMIP5 models too. As expected, the estimated tropospheric relative humidity
biases in CMIP6 models (Figure 12) are very similar to the actual tropospheric relative humidity biases in CMIP6
models showed in Figure 10 (the spatial pattern Pearson correlation is around 0.7). This gives us some confidence
on Equation 1. In the tropical free troposphere, the relative humidity biases are mainly from the specific humidity
biases while the contribution of the air temperature biases is small (Figure 12). This is consistent with the high
resemblance of the tropical free tropospheric relative humidity and specific humidity bias patterns and the low
resemblance of the tropical free tropospheric relative humidity and air temperature bias patterns as discussed
earlier (Figure 11). In the tropical boundary layer, the contributions from the air temperature biases and the
specific humidity biases to the relative humidity biases are both important. In the middle and high latitude
troposphere, both the air temperature biases and the specific humidity biases are also important to the relative
humidity biases. First looking at 300 hPa in the middle and high latitude troposphere. At this level, both the cold
biases and the positive specific humidity biases contribute to the positive relative humidity biases with a higher
contribution from the cold biases than the positive specific humidity biases. As the altitude decreases, the
contribution of the extratropical cold biases to the extratropical relative humidity biases decreases. In particular,
the extratropical cold biases become extratropical warm biases over the Southern Ocean and these warm biases
cause negative relative humidity biases that reduce the positive relative humidity biases generated by the positive
specific humidity biases over the Southern Ocean. This is particularly true in the boundary layer. As a result, the
boundary‐layer relative humidity biases are small although the boundary‐layer specific humidity biases are large
over the Southern Ocean.

4. Summary and Conclusions
This study seeks to quantify the tropospheric air temperature, specific humidity, and relative humidity biases in
the CMIP6 models using the AIRS Obs4MIPs V2.1 data (Tian & Hearty, 2020) and possible bias reduction from
the CMIP3 (Meehl et al., 2007) and CMIP5 (Taylor et al., 2012) models to the CMIP6 (Eyring et al., 2016)
models. Here, we have analyzed outputs of 91 CMIP models including 22 CMIP3 models, 35 CMIP5 models, and
34 CMIP6 models (Table S1 in the Supporting Information S1). We have focused on the MMEMs, the long‐term
(∼20 years) annual means, the model annual mean bias (CMIP–AIRS) maps, and global statistics at the eight
standard tropospheric pressure levels from 1000 hPa to 300 hPa.

As a quality check and validation of the AIRS Obs4MIPs V2.1 data, we first inter‐compare the AIRS, ERA5, and
MERRA‐2 data. We find that the AIRS and ERA5 tropospheric air temperature, specific humidity, and relative
humidity data are highly consistent with each other (Figures 1, 4, and 8), that is, biases are small, pattern cor-
relations are high and RMSDs are small between AIRS and ERA5 (Figures 2, 5 and 9). The global mean
tropospheric air temperature, specific humidity, and relative humidity between ERA5 and AIRS are smaller than
0.3 K, 0.1 g kg− 1 or 20%, and 5% at all pressure levels (Figures 2, 5 and 9). This indicates that the AIRSObs4MIPs
V2.1 tropospheric air temperature, specific and relative humidity data are of sufficient quality to be used as a
reference data set for climate model evaluation. On the other hand, the differences between the MERRA‐2 and
AIRS tropospheric air temperature, specific and relative humidity data are much larger than the differences
between the ERA5 and AIRS tropospheric air temperature, specific and relative humidity data, especially for
specific and relative humidity over the tropical moist deep convective regions in the free troposphere, where
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Figure 12. Tropospheric relative humidity (hur) biases (%) in CMIP6 models estimated using Equation 1 (first column) and its contributions from the tropospheric
specific humidity (second column) and air temperature (third column) biases in CMIP6 models.
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MERRA‐2 is shown to be much moister than both AIRS and ERA5 (Figures 1, 2, 4, 5, 8, and 9). These are
consistent with previous studies showing MERRA‐2 tropospheric specific humidity is biased too moist in the
upper troposphere (Gelaro et al., 2017).

We then compare the MMEMs of the CMIP3, CMIP5, and CMIP6 models against the AIRS Obs4MIPs V2.1
data. Our analyses indicate that all three phases of CMIP models share similar tropospheric air temperature,
specific humidity, and relative humidity biases relative to AIRS. These tropospheric temperature and humidity
biases in the CMIP models may impact the CMIP model ECS (Tian, 2015) and the future climate projections
based on these models.

First, CMIP tropospheric air temperature bias: In the free troposphere (700− 300 hPa), cold biases up to 4 K exist
over almost the whole globe with maxima (∼4 K) over the middle and high latitudes (poleward of 30°S and 30°N),
especially over the mid‐latitude storm tracks in the oceans, and minima (∼1 K) over the tropics (30°S− 30°N),
especially over the subtropical Pacific (Figure 3). In the boundary layer (1000− 850 hPa), cold biases are still
prevalent over most regions. However, warm biases of up to 2 K are found over the Southern Ocean near the
Antarctic coast and the southeastern Pacific along the coast of Peru as well as Amazonia and subtropical South
America (especially at 925 hPa) (Figure 3). Thesewarmbiases start at the lower free troposphere and become larger
and wider (northward) in the boundary layer. For all three CMIP phases, the global mean tropospheric air tem-
perature biases are negative at all pressure levels. They maximize (∼2 K) at 300 hPa and decrease with the
decreasing altitudewith aminimum (<0.5K) at 925 hPa in the boundary layer (Figure 2a). TheCMIP6models have
the smallest globalmean tropospheric cold biases, the highest pattern correlations, and the smallest RMSDs among
CMIP3/5/6 models (Figures 2c and 2d), indicating a possible cold bias reduction from CMIP3 and CMIP5 to
CMIP6.

Second, CMIP tropospheric specific humidity bias: Over the middle and high latitudes, negative specific humidity
biases are seen in the upper free troposphere at altitudes above 600 hPa (300− 500 hPa) while positive specific
humidity biases are seen in the lower troposphere below 600 hPa (700− 1000 hPa) with a gradual transition as the
altitude decreases from 300 to 1000 hPa (Figure 6). Over the tropics, positive free tropospheric specific humidity
biases are found over the off‐equatorial oceans, including the North Pacific, South Indian, Southeastern Pacific,
and South Atlantic Oceans, while negative free tropospheric specific humidity biases can be seen near the equator
(Figure 6). As the altitude decreases from 300 to 925 hPa, the area of positive free tropospheric specific humidity
biases becomes smaller and narrower and moves further eastward over the tropical oceans, especially over the
tropical Pacific Ocean, while the area of negative free tropospheric specific humidity biases becomes larger and
wider, and their magnitudes increase. In the boundary layer negative specific humidity biases can be seen almost
everywhere except for small parts of the eastern Pacific and eastern Atlantic Oceans (Figure 6). The tropical free
tropospheric specific humidity bias pattern is similar to the tropical precipitation bias pattern and related to the
double‐ITCZ bias in the models (Tian, 2015; Tian & Dong, 2020). The global mean tropospheric specific hu-
midity biases are positive for all three CMIP phases above 600 hPa (300− 500 hPa) but have different signs for
different CMIP ensembles below 600 hPa (700− 1000 hPa): Negative for CMIP3 and CMIP5 but positive for
CMIP6 (Figures 5a and 5b). Among all three CMIP phases, CMIP6 models have the highest pattern correlations
and the smallest RMSDs relative to AIRS while CMIP3 models have the lowest pattern correlations and the
largest RMSDs relative to AIRS at all tropospheric pressure levels except 300 hPa (Figures 5d and 5e). This
indicates a possible improvement from CMIP3 to CMIP5 and to CMIP6 in tropospheric specific humidity
simulation at all tropospheric pressure levels except 300 hPa.

Third, CMIP tropospheric relative humidity bias: The relative humidity biases are generally small (<10%) in the
boundary layer but large (up to 20%) in the free troposphere (Figure 10). Over the middle and high latitudes, large
positive free tropospheric relative humidity biases are found over the oceans (Figure 10). Here, both the air
temperature biases (Figure 3) and the specific humidity biases (Figure 6) are important to the relative humidity
biases (Figures 10 and 12). In the tropics, the free tropospheric relative humidity bias pattern (Figure 10) closely
resembles the free tropospheric specific humidity bias pattern (Figure 6). Large positive free tropospheric relative
humidity biases are generally found over the North Pacific, South Indian, Southeastern Pacific, and South Atlantic
Oceans, while small negative free tropospheric relative humidity biases are seen over Amazonia, central America,
the equatorial North Atlantic, south Asia including the Bay of Bengal, the equatorial Indian Ocean, the Maritime
Continent, the equatorial Pacific, and middle and high latitudes (Figure 10). The tropical free tropospheric relative
humidity biases (Figure 10) are mainly from the tropical free tropospheric specific humidity biases (Figure 6)
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instead of the tropical free tropospheric air temperature biases (Figure 3) and related to the double‐ITCZ bias in
the models (Tian, 2015; Tian &Dong, 2020) (Figure 12). For all three CMIP phases, the global mean tropospheric
relative humidity biases are positive at all pressure levels (Figure 9a). CMIP6 models have the largest while
CMIP5 models have the smallest global mean tropospheric relative humidity biases except for 1000 hPa. Thus,
from this perspective, there is no obvious improvement in CMIP6 models in comparison to CMIP3 or CMIP5
models. In the free troposphere, CMIP6 models have the highest pattern correlation and the smallest RMSDwhile
CMIP3 models have the lowest pattern correlation and the largest RMSD relative to AIRS among all three CMIP
phases (Figures 9c and 9d). This result indicates a possible improvement from CMIP3 to CMIP5 and then to
CMIP6 in the free tropospheric relative humidity simulation. In the boundary layer, the situation is different and
complicated and there is no obvious improvement in CMIP6 models in comparison to CMIP3 or CMIP5 models.

Data Availability Statement
References for the data sets used in this research are: Tian and Hearty (2020), Hersbach et al. (2020), Gelaro
et al. (2017), Meehl et al. (2007), Taylor et al. (2012), and Eyring et al. (2016). The AIRS Obs4MIPs V2.1 data
(Tian & Hearty, 2020) are available on the ESGF Obs4MIPs website (https://esgf‐node.llnl.gov/projects/
obs4mips/). The ERA5 data (Hersbach et al., 2020) are available on the Copernicus Climate Change Service (C3S)
Climate Date Store (https://cds.climate.copernicus.eu/). The MERRA‐2 data (Gelaro et al., 2017) are available on
the NASA GSFC GMAO website (https://gmao.gsfc.nasa.gov/reanalysis/MERRA‐2/data_access/). The CMIP3
(Meehl et al., 2007), CMIP5 (Taylor et al., 2012), and CMIP6 (Eyring et al., 2016) data are available on the ESGF
CMIP3 (https://esgf‐node.llnl.gov/search/cmip3/), CMIP5 (https://esgf‐node.llnl.gov/search/cmip5/), and CMIP6
(https://esgf‐node.llnl.gov/search/cmip6/) website, respectively.
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