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Abstract

Many segmentation or change-point detection methods for homogenizing cli-

mate time series compare candidate station data with reference data to elimi-

nate common climate signals and more efficiently detect spurious, non-

climatic changes. One drawback is that it is difficult to decide whether the

detected change-point is due to the candidate series or to the reference. A so-

called attribution procedure is typically applied in a post-processing step for

each detected change-point. This article describes a new statistical method for

the attribution of change-points detected in Global Navigation Satellite System

(GNSS) minus reanalysis series of integrated water vapour. It requires at least

one nearby station with similar GNSS and reanalysis data. Six series of differ-

ences are formed from the four base series (BS) and are tested for a significant

jump at the time of the change-point detected in the candidate station. The six

test results are analysed with a statistical predictive rule to attribute the

change-point to one, or several, of the four BS. Original aspects of our method

are: (1) the significance test, which is based on a generalized linear regression

approach, taking both heteroscedasticity and autocorrelation into account;

(2) the predictive rule, which uses a machine learning method and is con-

structed from the test results obtained with the real data by using a resampling

strategy. Four popular machine learning methods have been compared using

cross-validation and the best one was applied to a real data set (49 main sta-

tions with 114 change-points). The results depend on the choice of the test sig-

nificance level and the aggregation method combining the prediction results

when several nearby stations are available. We find that 62% of the change-

points are attributed to GNSS, 19% to the reanalysis, and 10% are due to coinci-

dent detections.
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1 | INTRODUCTION

Long records of climate observations are crucial for monitor-
ing regional and global climate change and understanding
the underlying climate processes (Dunn et al., 2021;
Trenberth et al., 2007). However, many observational cli-
mate data are affected by inhomogeneities due to changes in
instrumentation, in station location, in observation and pro-
cessing methods, and/or in the measurement conditions
around the station (Menne et al., 2009; Mitchell &
Jones, 2005; Peterson, Vose, et al., 1998). Inhomogeneities
often take the form of abrupt changes, which are detrimen-
tal to estimating trends and multi-scale climate variability
(Easterling & Peterson, 1995; Jones et al., 1986). Various
homogenization methods have been developed for the detec-
tion and the correction of inhomogeneities in the context of
climate data analysis (Costa & Soares, 2009; Peterson,
Easterling, et al., 1998; Reeves et al., 2007; Venema
et al., 2012). Hereafter, we will refer to spurious
(non-climatic) abrupt changes in the mean signal as
‘change-points’. The change-point detection step, also called
segmentation, can be performed in two classical ways, using
either a statistical test (e.g., Alexandersson, 1986;
Easterling & Peterson, 1995; Menne & Williams, 2005, 2009;
Szentimrey, 2008; Wang et al., 2010) or a penalized likeli-
hood approach (e.g., Caussinus & Mestre, 2004;
Domonkos, 2011; Lu et al., 2010; Mestre et al., 2013). The
former proceeds sequentially and detects one change-point
at a time, which leads inevitably to a sub-optimal solution.
On the other hand, the second approach estimates all the
change-points at once, and is thus optimal or sub-optimal,
depending on the search algorithm. When the whole param-
eter space is explored, such as with the dynamic program-
ming algorithm, the method is optimal. Many climate
segmentation methods are used on differenced data, where
the target series is differenced with respect to a reference
series. Using differenced series helps to remove the common
climate signal and more efficiently detect spurious (non-cli-
matic) changes. However, one drawback of this approach is
that any detected change-point can be either due to the tar-
get series or to the reference series, if the latter is not homo-
geneous. In this so-called relative homogenization approach,
the reference series has been traditionally constructed by
compositing the series from several nearby stations
(Alexandersson, 1986; Guijarro, 2011; Menne &
Williams, 2005). Compositing relaxes the need for homoge-
neous reference series thanks to the averaging from many
nearby stations, such that the detected change-points can be
attributed with good confidence to the target series. Unfortu-
nately, in practice, composited reference series often contain
non-negligible inhomogeneities. Another approach based on
the pairwise comparison of individual series has been shown
to be an interesting alternative (Caussinus & Mestre, 2004;

Domonkos et al., 2021; Menne & Williams, 2009; Mestre
et al., 2013). In this approach, the change-points from the
target and reference series are disentangled in a post-
segmentation step, referred to as ‘attribution’. In
(Caussinus & Mestre, 2004), the attribution step is done
manually, by using both statistical inference and historical
information (station metadata) in an iterative way. In
(Menne & Williams, 2009), an automatic procedure is pro-
posed that attributes a change-point to the station with the
highest overall count of detections. This method also uses
station metadata when available. It assigns the detected
change-points to the nearest known event from the station
history within some confidence limit. In (Mestre
et al., 2013), both a semi-automatic method similar to
(Caussinus & Mestre, 2004) and a fully automatic method
based on the joint detection of all series at once are imple-
mented, but the latter is not a relative homogenization
method and is thus not recommended (Domonkos, 2021).

The above-mentioned attribution methods generally
require many nearby stations in order to find out which
station is the cause of the detected change-point. They
also operate in an iterative way, alternating the segmen-
tation and attribution steps, and perform better when his-
tory information is included. In this work, we propose a
new attribution method, which significantly relaxes these
constraints. First, it works even if only one nearby station
is available, which makes it usable in data sparse net-
works. Second, it operates in a post-processing mode,
meaning that it uses as input the results from the seg-
mentation step and does not need to iterate, although
iterations may possibly help to make it more robust.
Thirdly, it uses a predictive rule based on machine learn-
ing to attribute the cause of change-point among the
tested series. The latter is trained in a preliminary step
based on real data and is thus optimized for the specific
data of interest.

We use integrated water vapour (IWV) derived from
Global Navigation Satellite System (GNSS) measurements
(Bock, 2019) and from the fifth ECMWF reanalysis (ERA5;
Hersbach et al., 2020). Because the global GNSS data set is
relatively sparse, the reanalysis is used as a reference to
form the target minus reference difference series (Bock
et al., 2019; Nguyen et al., 2021; Ning et al., 2016; Quarello
et al., 2022; Van Malderen et al., 2020). The GNSS minus
reanalysis data are segmented with the ‘GNSSseg’ method
developed by (Quarello, 2020) which is based on a penal-
ized likelihood approach. It detects abrupt changes in the
mean in the presence of a periodic (seasonal) bias and a
periodic variance (on a monthly basis). It is available in the
R package GNSSseg (https://cran.r-project.org/web/
packages/GNSSseg/index.html). It has been used in a
benchmark exercise based on simulated data where it was
ranked one of the best among eight segmentation tools
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(Van Malderen et al., 2020). The attribution step was not
necessary in that study because the (simulated) reference
series was homogeneous. With real data, the situation is
different. Several past studies highlighted the presence of
abrupt changes in the mean of GNSS series (Bock
et al., 2014; Ning et al., 2016; Parracho et al., 2018; Vey
et al., 2009) or in the reanalysis data (Nguyen et al., 2021;
Ning et al., 2016; Parracho et al., 2018; Schroeder
et al., 2016). Inhomogeneities in the GNSS series can be
due to equipment changes, changes in the station's envi-
ronment, or changes in the data processing procedure
(Nguyen et al., 2021). Inhomogeneities in reanalyses can be
due to changes in the global observing system, for example,
the start or end of satellite missions (Rienecker et al., 2011;
Schroeder et al., 2016). The goal of the attribution method
is to determine whether a change-point detected by the seg-
mentation method is due to GNSS or to the reanalysis.

Figure 1 helps to explain the idea of the attribution
method proposed in this paper. Let us denote by G and E
the GNSS and ERA5 reanalysis series of the main station,
respectively, and G' and E' those from a nearby station.
We denote by t1, t2, and t3, the change-points detected by
the segmentation method in the G-E series, and by t01 and
t02, the change-points detected in the G'-E' series. These
change-points have jumps in the mean of +1, −1, and
−0.5 signal unit for the G-E series, and +1 and −0.5

signal unit for the G'-E' series. Note that in this sketch,
the time period of the G'-E' series covers all the change-
points of the main station, but in practice, several nearby
stations may be necessary. The positions of the change-
points illustrate different typical situations encountered
in practice with our data. The first change-point in the
nearby station, t01, is quite far from all the change-points
detected in the main station. This illustrates the fact that
the causes of inhomogeneities in GNSS data are primarily
station-specific, that is, coincident change-points in G
and G' are expected to be rare. On the other hand, t02 is
close in time to t3 which illustrates an inhomogeneity in
the reanalysis data with a large spatial extension, that is,
impacting both E and E'. Real data often contain data
gaps which are due to instrumental failures leading even-
tually to an equipment change and possibly to an inho-
mogeneity. This situation is illustrated with a gap after t2
in the G-E series. The likeliness of these different situa-
tions is summarized in the following ‘empirical’ rules
which will help interpreting the features seen in the dif-
ference series:

R1. It is unlikely that change-points in two dif-
ferent GNSS series (here G and G') occur at the
same time because they are station-specific in
nature (e.g., hardware failure, equipment
change, local environmental change).

R2. On the other hand, it is likely that change-
points in the reanalysis occur simultaneously at
the main and nearby sites (impacting E and E')
because they are expected to have a large spa-
tial extent (e.g., due to a change in assimilation
of satellite measurements).

Inspection of the first two series of differences (SDs)
in Figure 1 in the light of these rules suggests that t1 is
likely due to a +1 jump in G, t01 to a +1 jump in G', t2 to a
−1 jump in G, and t02 and t3 to a −0.5 jump in both E and
in E'. However, to confirm these guesses, we need to
inspect additional SDs combining more of the four base
series (BS, G, E, G', and E'). The lower plot in Figure 1
shows the G-G' series. It is straightforward, by the same
reasoning, to confirm the guessed interpretation of the
former two series. In a more general procedure, we
would use all six combinations of the four BS and by
deduce which of the four BS is/are the cause of the jumps
observed in the multiple differenced series.

Table A1 presents all the relevant combinations of
jumps/no jumps in the four BS and the corresponding
jump level in the SD that we want to detect with the test.
We distinguish two test results tables. The SD
Table presents the true jump amplitudes, coded on five

FIGURE 1 Schematic view of three paired series of differences,

G-E, G'-E', and G-G', where G and E are the series from the main

station, and G' and E' the series from the nearby station. Change-

points detected by the segmentation method in the main (nearby)

station are noted tk (t0k) and are indicated by the vertical solid

(dotted) lines. By convention, t0 (t00) and tK (t0K 0 ) refer to the time of

the first and last observation, respectively, in the main (nearby)

station. The coloured horizontal lines with arrows indicate the

segments on the left and the right of the change-points that are

used to estimate the deterministic and stochastic parameters of the

regression model. This figure is discussed the Introduction. [Colour

figure can be viewed at wileyonlinelibrary.com]
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values, and the reduced series of difference (RSD) Table,
coded on three values, which is used in practice. Both
tables contain duplicates highlighted by the coloured
background. Duplicates can be separated with the help of
joint probabilities given in the BS Table (see Supplement
S1 for details on how they are derived). If the test proce-
dure were perfect (no false alarm and no misses), any
combination of six test results could be found in the RSD
Table and the attribution method would simply consist in
choosing the configuration with the highest probability
in the BS Table. In practice, some of the test results may
be wrong due to noise in the series, leading to configura-
tions that are not be in the RSD Table. To overcome this
difficulty, our attribution procedure builds on two main
ideas. First, the test is built upon the generalized least
squares (GLS) method which is known to have higher
detection power than other traditional regression
methods in the presence of heteroscedasticy and autocor-
relation (see Supplement S2). Second, a statistical predic-
tive rule is constructed using a machine learning
algorithm and tests results from real data. This is an effi-
cient way to predict the most likely solution when the
combination of the six test results is not in the RSD
Table.

Section 2 describes the stochastic properties of our
data set composed of IWV data from GNSS data and
ERA5 reanalysis, and highlights the embedded heterosce-
dasticity and autocorrelation in the SDs. Section 3 sum-
marizes the test method based on GLS (equations and
simulation results are presented in the Supplement S2)
and presents test results from the real data. Section 4
describes the method for the construction of the predic-
tive rule, compares the performance of four popular
machine learning methods, and presents the attribution
results from the real data. Section 5 discussed the results
and concludes.

2 | DATA CHARACTERIZATION

2.1 | Data preparation

We use reprocessed GNSS tropospheric delay (ZTD) data
from Center for Orbit Determination in Europe (CODE)
and from Nevada Geodetic Laboratory (NGL). We thor-
oughly quality-checked and converted the ZTD data to
IWV, following the procedure described in (Bock
et al., 2021). The CODE data set comprises 436 stations
from the International GNSS Service (IGS) from 1994 to
2014 (REPRO2015) which is extended to the present by a
consistent post-processing (Dach et al., 2023). The NGL
data set comprises more than 20,000 stations from 1994
to present (Blewitt et al., 2018). It is similarly based on a

reprocessed data set (1994–2020) extended with a consis-
tent operational data stream. The final IWV data of both
data sets are distributed with daily and monthly time res-
olutions (Bock, 2022, 2023). This study uses daily
IWV data.

We use the same 81 ‘main stations’ as (Nguyen
et al., 2021), which are from the CODE data set. Nearby
stations were searched in the NGL data set, with a dis-
tance limit of 200 km in horizontal and 500 m in vertical.
Data from the ERA5 reanalysis are extracted at the loca-
tion of each GNSS station and the difference series, G-E
and G'-E', are formed and segmented using the GNSSseg
package (Quarello et al., 2022). The segmentation results
are post-processed to remove clusters of change-points
which occur occasionally in regions where the GNSS data
and reanalysis data have a significant representativeness
difference (Bock & Parracho, 2019). Change-points
within clusters are either completely removed, or only
one is kept (see an example in Figure 3 of [Quarello
et al., 2022]).

Due to the scarcity of the global GNSS network and
the imposed horizontal and vertical limits, only 49 main
stations have at least one nearby station. Finally, only
114 change-points can be tested in the attribution proce-
dure with the help of a total of 494 (main, change-point,
nearby) triplets.

Each triplet associates a main station and a nearby sta-
tion comprising four BS (G, E, G', and E') and six SDs
(G-E, G-G', etc.). The IWV data from the nearby station (G'
and E'), are adjusted for the difference in height with
respect to the main station following the method described
in (Bock et al., 2022), where model coefficients are esti-
mated from ERA5. After the adjustment, each of the six
series is cleaned for outliers, where data points exceeding
three standard deviations from the median are removed.
Data within the above-mentioned clusters are also removed
in the corresponding (main or nearby) series. Additional
data are removed in the nearby series only when a change-
point detected in the nearby series (G'-E') is very close
(e.g., <10 days) to a change-point in the main series (G-E).
This case corresponds, for example, to configuration 11 in
the BS Table (jump in E and E'). A window of 10 days is
used to allow for the uncertainty in the timing of the
change-point due to noise in the data. This case is illus-
trated in Figure 1 where the data between t3 and t02 have
been removed. The data gap in the G-E series just after t2
is introduced to illustrate the case of screened data within
a cluster. Note that the number of data points in a series
combining the main and nearby sites (e.g., G-G') is
always less than or equal to that of a collocated series
(e.g., G-E or G'-E'). To keep a high detection power, we
set a minimum number of 200 consecutive points on each
side of a change-point.
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2.2 | Data characterization

The GNSS minus reanalysis difference series show usu-
ally strong heteroscedasticity and periodic (seasonal)
biases, along with weak autocorrelation (Quarello
et al., 2022). In the following, a series is modelled using
the following regression model:

zt=μL+δxt+st+et, ð1Þ

where t refers to the time, μL is the mean of the signal on
the left of the change-point, δ is the amplitude of the
jump, xt is a step function (xt=0 if t≤tk and 1 if t>tk,
where tk is the time of the change-point detected by the
segmentation method), st is the Fourier series, and et is
the noise term. For ease of notation, we use t as the time
index, with t=1,…,n, but in reality the data may contain
gaps and the time values are not consecutive. To account
for this, t can be replaced by t ið Þ, with i=1,…,n. To
account for both heteroscedasticity and autocorrelation,
we follow (Pinheiro & Bates, 2000) and represent et as
the product of two factors:

et=e�t σt, ð2Þ

where e�t represents a stationary autocorrelated process of
unit variance and σ2t is the time-varying variance of et,
that is, Var et½ �=σ2t . Preliminary investigation of our data
showed that most of the time the noise model is well
approximated by an AR(1). Other noise models such as
MA(1), ARMA(1,1), and pure white noise occur some-
times. We tested also for higher order ARMA(p,q) models
and they are very rare. We limit thus ourselves to the four
possible ARMA(p,q) models, with p,q� 0,1f g. Recall that
an ARMA(1,1) model writes (Shumway & Stoffer, 2017):

e�t =ϕe�t−1+θwt−1+wt, ð3Þ

where wt is a Gaussian white noise. The noise model
identification and parameter estimation methods are
described in the next section. Note that other stochastic
models including periodic variations in the mean, hetero-
scedasticity and autocorrelation have been proposed by
(Lund et al., 1995).

Figure 2 shows an example of a time series (jagged
grey curve), with the estimated Fourier series (smooth
black curve), the estimated standard deviation (SD), bσt
(black curve at bottom), and the regression residuals (jag-
ged orange curve). The strong heteroscedasticity is obvi-
ous, and because it is not stationary, we used a moving
window approach (similar to the outlier screening proce-
dure described above) to estimate it.

Tables 1 and 2 summarize the characteristics of our
data set in terms of heteroscedasticity and noise structure,
respectively, for all six SD (G-E, G-G'…), for the main and
all nearby stations. The results are sorted according to the
distance between the main and the nearby stations (smaller
or larger than 50 km). Regarding the heteroscedasticity,
three groups can be identified when the distance between
sites is small. The first group (G1) includes G-E and G'-E',
that is, the series with collocated data, which have moder-
ate mean SD of 0.7 kg m−2. The second group
(G2) includes E–E' and G-G', that is, the series comparing
the same technique, which have the smallest mean SD
(0.5 kg m−2). The last group (G3) involves data from non-
collocated data and mixed techniques, and gets the largest
mean SD. As the distance increases, the mean SD of series
involving different sites increases, as expected from
increased representativeness differences. Another striking
feature is that the half-range of the variation in SD is
around 70% for all six series, indicating that heteroscedasti-
city is a strong feature in our data.

Figure 3 shows the distributions of the noise models
and of the estimated coefficients for the six differences,
again sorted according to the distance. The AR(1) model
is the dominant model, with a proportion between 50%
and 80%, independently of the distance, while the white
noise model is extremely rare. The proportion of
MA(1) and ARMA (1,1) depends on the distance and the
series: ARMA(1,1) is dominant for the collocated series
(similar to the noise group G1), as well as for the
series comparing the same technique (group G2), when
the distance is small. On the opposite, when the distance
is large, MA(1) becomes more frequent, like for the series
mixing techniques and sites (group G3). The increase of
the distance does thus not only increase the variance
of the noise but changes also its nature. Another interest-
ing aspect is the values of the coefficients. For the AR(1),
they are very similar (around 0.3) for all series, regardless
of the distance. Similarly, for the MA(1), they are very
similar (around 0.2). More surprisingly, the estimated
coefficients of the ARMA(1,1) model for the non-
collocated series depend somewhat on the distance, with
the exception of E–E'. Values of bϕ and bθ are around 0.6
and −0.3, respectively, for the collocated series and when
the distance is small, and around 0.2 for both coefficients,
when the distance is large. For E–E', the values are
always around 0.2. The ARMA(1,1) models with coeffi-
cients of opposite sign found at short distance suggest
that in these cases the noise is a mixture of AR(1) and
white noise (Shumway & Stoffer, 2017). When the dis-
tance increases, the moving average part becomes more
important, which may be interpreted as a spatial/
temporal averaging of the variability in the difference
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series. The mean values of the estimated coefficients are
reported in Table 2.

3 | PROPOSED TESTS FOR A
FIXED CHANGE-POINT

This section presents the proposed test for the signifi-
cance of a change-point (at a known position). This test
is essentially a classical test in a regression model that
takes into account the different characteristics of
the data.

3.1 | Regression model and inference

The series of IWV differences is modelled using the fol-
lowing regression model:

z=Xβ+e, ð4Þ

where β includes the coefficients of the deterministic part
of the model, β= μL,δ,a1,…,a4,b1,…,b4ð Þ0, and X includes
the corresponding regressors. Here, the al and bl,
l=1,…,4, are the coefficients of a Fourier series of order
4, and the corresponding regressors are cos 2πlt ið Þ=Tð Þ
and sin 2πlt ið Þ=Tð Þ, with T=365 days, and t ið Þ is the time
of the ith observation, zi, i=1,…,n. The noise vector, e is
assumed to be distributed as N 0,Σ0ð Þ, where Σ0 is the
variance–covariance matrix describing the noise model.

Testing the significance of the change-point simply
amounts to testing the nullity of the jump δ using the
classical test statistic τδ=bδ=bσbδ, where bδ is an estimator of
δ and bσbδ its estimated standard deviation. A powerful test
requires estimators with good properties to be considered.
Since both the classical linear model assumptions (the
independence and the homoscedasticity of the errors) are
not satisfied and the covariance Σ0 is unknown, we pro-
pose to use the well-known feasible GLSs (FGLS)
method. This method, as well as the traditional methods,
the GLS and the other approach OLS-HAC, are presented

FIGURE 2 Top: Global

Navigation Satellite System

minus fifth ECMWF reanalysis

time series at station ALBH

(Victoria, Canada), in grey, and

estimated Fourier series, in

black, for a long, homogeneous,

segment (no change-point

detected by the segmentation

method). Middle: FGLS

regression residuals (jagged

curve) and moving median

(smooth curve). Bottom: moving

standard deviation illustrating

the strong heteroscedasticity in

the data. [Colour figure can be

viewed at

wileyonlinelibrary.com]
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in Supplement S2 and are compared via a simulation
study. This study shows that the FGLS outperforms its
competitor, OLS-HAC, in terms of test power.

3.2 | Application to real data

The FGLS procedure was applied to the SDs from the
494 main/nearby pairs. Figure 4 shows the distribution of
estimated jump amplitudes, their standard errors, and
the associated absolute t-values computed from
Equation (10), where the non-collocated series (G-G',
G-E', E–E', and G'-E) are sorted by distance. Notably, the
three series involving G have significantly larger median
jump amplitudes (around 0.3 kg m−2) than the other
three series, regardless of the distance. This result sug-
gests that large jumps are occurring more often in the G
series than in the E, E', or G' series.

In G'-E' and G'-E, the median jump is small, as
expected and expressed in our first rule stating that it is
unlikely to have a coincident change-point in a nearby
GNSS station when there is one detected in the main

station. Additionally, a notable observation is that the
median jump in E–E' is much larger at larger distance,
which may be due to errors in the estimated jumps
induced by an increased noise at larger distance. The var-
iation of the SD of the noise with distance directly
impacts also the jump standard error. The standard error
of estimated jumps is notably smaller in collocated series,
such as G-E and G'-E', as well as in non-collocated series
at short distance. Furthermore, the standard errors in
G-E' and G'-E (non-collocated series from different
techniques) are slightly larger than in G-G' and E–E'
(non-collocated series from the same technique) even at
short distance, as also noticed in the three noise groups
discussed in Section 2.2. Finally, the t-values can be inter-
preted by considering the jump magnitudes and their
standard errors. It is evident that the three series involv-
ing G yield larger t-values due to higher jump magni-
tudes. In contrast, the other three series have much
smaller t-values, mainly because some of the large jumps
at larger distance are damped by the larger standard
errors. A common feature to all non-collocated series is
that the t-values decrease with distance.

FIGURE 3 Results of noise model identification in the real data. (a,b) Histogram of model types (white noise, AR(1), MA(1), ARMA

(1,1)) selected with auto.arima function for each of the six series of differences (G-E, G-E', etc.); the bar heights show the percentage (y-axis)

of cases for each series, the number of cases is indicated on the top of each bar. (c,d) noise model coefficients, bϕ and bθ, estimated with arima

function, for each model. Results are sorted according to the distance between the main and the nearby stations, (a,c) smaller than 50 km,

(b,d) larger than 50 km. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 5 shows the corresponding test results with a
significance level α=0:05. At short distance, the three
series involving G are almost all significant. Especially,
all the G-E jumps are significant, which demonstrates a
high consistency between our FGLS tests and the seg-
mentation results. Almost all G-E' jumps are significant
as well, while almost all E–E' are not significant. This lat-
ter result confirms our second rule (E and E' are expected
to be consistent, that is, either no jump or a jump in both,
simultaneously). Most G-G' jumps are also significant,
which confirms the idea that most jumps are in
G. Finally, the G'-E' and G'-E jumps are most of the time
insignificant, which again supports of our first rule
(G and G' are unlikely to change simultaneously). As the
distance increases, the proportion of insignificant jumps
also increases due to higher standard errors.

4 | PREDICTIVE RULE

The objective is to build a classifier ψ xð Þ, that predicts the
configuration y, that is, the quadruplet composed of G, E,
G', and E', given x, the vector composed of the test statis-
tics from the SDs. In the development of this classifier,
we are confronted with two principal challenges. First,
the true configurations are unknown, resulting in the

unavailability of y for training, evaluation and prediction.
Second, the presence of all configurations in the data is
nearly improbable due to the rarity of occurrence for cer-
tain configurations, as indicated by the probabilities in
Table A1. To address these challenges, we propose to
generate a synthetic dataset based on the N=494 test
results of the real data using a bootstrapping technique.
This dataset would ensure each configuration is repre-
sented through a set of x,yð Þ pairs. We then evaluated the
performance of four popular classifiers on this dataset.

4.1 | Preliminary considerations

4.1.1 | Considered test results

In this task, we employed the test statistics from five series:
G-G', G-E', E–E', G'-E', and G'-E', due to the smaller sample
size of the G-E test, which could lead to repetition in the
synthetic dataset. We denote by zℓ= zℓ1,…,zℓ5ð Þ the vector
of the five test statistics for the ℓth test in the five SD,
and by Z= zℓð Þℓ=1,…,N the formed data set of size N×5,
with N=494, which will be called the original data set in
the sequel. Note that the results of all the nearby stations
for a given change-point in a given main station can be
viewed as replicates reducing the real information to

TABLE 1 Characterization of the

heteroskedasticity in the real data from

494 main/nearby series.Series

Mean of SD

Half-range of SD (%)distance < 50 km distance ≥50 km

G – E 0.7 ± 0.26 72 ± 20

G' − E' 0.66 ± 0.24 67 ± 19

G − G' 0.52 ± 0.17 1.31 ± 0.47 63 ± 21

E − E' 0.41 ± 0.17 1.26 ± 0.47 73 ± 26

G − E' 0.82 ± 0.21 1.38 ± 0.46 67 ± 21

G' – E 0.83 ± 0.26 1.39 ± 0.46 66 ± 20

Note: The table reports the mean and the half-range of the standard deviation for each of the six paired
difference series. The mean values are sorted by distance.

TABLE 2 Characterization of the

autoregressive noise structure of the

real data.

Distance <50 km ≥50 km

Series AR(1) Ma(1) ARMA(1,1) AR(1) Ma(1) ARMA(1,1)

Coefficients ϕ θ ϕ θ ϕ θ ϕ θ

G-E 0.30 0.00 0.57 −0.32

G'-E' 0.31 0.22 0.59 −0.34

G-G' 0.33 0.19 0.65 −0.31 0.30 0.22 0.11 0.12

E–E' 0.31 0.21 0.34 0.23 0.29 0.20 0.25 0.20

G-E' 0.33 0.24 0.59 −0.24 0.31 0.21 0.29 0.08

G'-E 0.32 0.21 0.57 −0.28 0.30 0.22 0.18 0.21

Note: The table reports the mean estimated coefficients of the noise model for each of the six paired
difference series, sorted by distance.
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114, that is, the number of couples of (main station,
change-point); the available information is thus quite
small.

4.1.2 | Considered configurations

In Table A1, among the 38 configurations of the RSD
Table, there are two doubles of the five coded test results

with same prior probabilities: configurations (7,28) and
(12,19). We decide to keep the configurations 7 and
19 which contain a change-point in G. This reduces the
total number of configurations to C=36.

4.1.3 | The four considered learning
algorithms

In this study, we considered four learning algorithms are
the linear discriminant analysis (LDA; Fisher, 1936), the
classification and regression trees (CART; Breiman
et al., 1984), the Random Forest (RF; Ho, 1995) and the
k-nearest neighbours (kNN; Cover & Hart, 1967). The lat-
ter three involve parameters that need to be tuned. They
are here automatically optimized by K-fold cross-
validation with K=10 using the generic function ‘train’
of the R package caret.

4.1.4 | Building of the complete synthetic
data set

As previously mentioned, the bootstrapping technique
has been employed to construct the synthetic dataset,
operating on the principle of random sampling with
replacement from the original data. More precisely, for
each configuration y and each SD j, we create Ny vectors
of the five test statistics or t-values (the sample x) by
resampling among the t-values values zℓj

� �
ℓ that lead to

the test conclusion of y. The correspondence is made with
respect to the test outcome (−1,0 or 1) for a given signifi-
cance level α. For instance, for configuration 1 in
Table A1, each t-value is randomly selected from the
respective SD, ensuring that the significance levels of
these five t-values are (1,1,0,0,0). The constructed data set
is noted D= yℓ,xℓð Þℓ

� �
ℓ=1,…,n of size n=

P
yNy.

Addressing the potential severe imbalance among
the configurations within the data is crucial. We
consider two strategic approaches: the ‘balanced
sample case’, in which we can use the same number
of replicates Ny=R for each configuration y; and the
‘imbalanced sample case’, in which the number of repli-
cates for each configuration, Ny, is proportional to the
prior probability of each configuration, py, given in
Table A1, that is, Ny=npy where n is the total number
of data.

4.2 | The proposed cross-validation
bootstrap procedure

Cross-validation is a popular statistical technique to test a
classifier. It involves splitting the data into two subsets:

FIGURE 4 Distribution of absolute jump amplitudes and their

standard errors, and the associated t-values computed from the

feasible generalized least squares estimates of the real data

(494 main/nearby pairs). The results are sorted based on the main/

nearby distance (<50 km and ≥50 km). [Colour figure can be

viewed at wileyonlinelibrary.com]
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the learning set, on which the classifier is constructed,
and a test set, on which the classifier is tested. Since
observations of the complete data set D are replicated
from the original data set Z, which is small and repeated,
the learning and test data sets tend to overlap, inducing
inevitably a bias and leading to an underestimation of
misclassification error. This is why, we propose here a so-
called cross-validation bootstrap (CVB) strategy which
consists in first splitting the original data set Z into the
learning and test subsets before constructing the com-
plete data set D. The proposed CVB procedure is
described in Algorithm 1.

Table 3 gives the mean misclassification error for the
four considered classifiers with B=20. The table presents
results for three scenarios: the first and second one involve
constructing the complete dataset using different sampling
(balanced vs. imbalanced), both with α=5%, while the last
one employs a balanced sampling with α=1%. Compared
with the balanced sample, the misclassification error is
lower for the imbalanced sample in the case of LDA and
KNN, but slightly higher for CART and RF. Similar
behaviour is observed when comparing learning with
α=5% and α=1% for the balanced sample. Overall, the
Random Forest algorithm outperforms the other classi-
fiers in all three scenarios, with the best performance
achieved when trained with a balanced sample with
α=5%. We thus choose the RF algorithm and select as
the final predictive rule, bψ , the best one among the B
resamplings. The predictive power of the five SD based
on the accuracy criterion (the percentage of correct pre-
dictions) are in the decreasing order: E–E', G-G', G-E',
G'-E and G'-E'.

4.3 | Application to the real data set

The objective is to predict the configuration for each
change-point of every main station. When several nearby
stations are available for a given change-point the results
are aggregated using a weighted prediction score. For a
configuration c, the prediction score writes:

bP y main; change-pointð Þ=cjnearby station nsð Þ
� �

=

P
nswns1 bψ xnsð Þ¼cf gP

nswns
,

where wns denotes the weight of the nearby station ns,
and the final configuration is the one with the highest
score

by main; change-pointð Þ ¼ argmax
c

bP y main; change-pointð Þð
¼ cjnearby stationÞ:

We compared two different weightings:

• inverse distance weighting: wns=1=dns, where dns is
the distance between the nearby ns and the main
station,

• weighting proportional to the joint probability given in
Table A1: wns=pc.

In the probability-based weighting, when the highest
score is reached by two different configurations (e.g., c=
1 and 10), the one with the shortest distance is selected.

FIGURE 5 Distribution of test results associated to the estimated amplitudes of jumps shown in Figure 4, sorted by distance: (a) <
50 km, (b) ≥50 km. Test results are colour coded as: green for insignificant and red/blue for significant downward/upward jump. [Colour

figure can be viewed at wileyonlinelibrary.com]
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Figure 6 presents the distribution of predicted config-
urations, after aggregation, for four variants: (a) balanced
sampling with α=5%, aggregated with distance;
(b) balanced sampling with α=1%, aggregated with dis-
tance; (c) imbalanced sampling with α=5%, aggregated
with distance; and (d) balanced sampling with α=5%,
aggregated according to prior probability. Across all fig-
ures, four predominant groups emerge consistently: G
(c=1 and 15), (G, E, E') (c=31 and 35), (E, E') (c=10 and
23), and E (c=8 and 22). Remarkably, these configura-
tions correspond to the highest joint probabilities, p, as
indicated in Table A1: G and (E, E') with p=0:18, (G, E,
E') with p=0:04, and E with p=0:01. This demonstrates
that the classifier actually predicts the configurations
which we believe are the most likely in the real data,
even when these probabilities are not directly used in the
procedure such as in variants (a) and (b).

In variant (a), 47 of the change-points (i.e., 41%) are
attributed to group G and 29 (i.e., 25%) to group (G, E,
E'), after the aggregation. Analysis of the six test results
before and after the prediction helps to understand the
relatively high frequency of these two groups. In general,
the test results can be of two sorts: either the six results
correspond to a configuration in Table A1, and in this
case the predictive rule predicts the same result
(as expected), or the result is initially not in the table,

and the predictive rule will select a configuration that is
‘close’ to the initial configuration. Among all the test
results going to group G, that is, (1,1,1,0,0,0) for c=1 and
(−1,-1,-1,0,0,0) for c=15, about 75% are initially in the
table. This high percentage is consistent with the obser-
vation that many jumps are significant in the first three
tests and insignificant in the last three, as seen in Fig-
ures 4 and 5. The 25% of cases which are not initially in
the Table A1 differ from these configurations by one or
two elements, for example, case (1,0,1,0,0,0) differs from
c=1 by only the 2nd element (the G-G' test). This case is
then attributed to c=1 by the predictive rule when the
absolute value of the t-value of the estimated jump in
the G-G' series is close to the critical value, τα=2=1:96, in
combination with smaller t values in E–E', G'-E', and
G'-E. For group (G, E, E'), the percentage of cases that
are not in the Table A1 is slightly more than 50%. Almost
all these cases are either (1,1,1,0,1,0) or (−1,-1,-1,0,-1,0),
which differ only by the 6th element (the G'-E test) from
the final configurations c=31 (1,1,1,0,1,1) or c=35 (−1,-
1,-1,0,-1,-1), respectively. Contrary to the G-G' series, the
G'-E series has smaller t-values on average, hence the fre-
quent 0 in the initial test results. The fact that almost all
these cases are finally predicted as c=31 or 35 can be
explained by the simultaneous occurrence of: high
t-values in G-G' and G-E', a small t-value in E–E', a high

ALGORITHM 1 The CVB procedure

Data: the original data Z.
for b=1 to B do.

1. sample a learning data set Zb,L from Z with probability 0:8, and form the test data set Zb,T with the
remaining 20% of data. The random sampling is performed on the rows of Z, that is, on each test
2. form the two associated complete data sets Db,L and Db,T from Zb,L and Zb,T by preserving the learn/test
proportion of 80%=20%, that is, for each configuration y, Db,L contains 0:8Ny samples, and Db,T 0:2Ny. In
the ‘balanced sample case’, we chose Ny=R=100 and in the ‘imbalanced sample case’, the smallest value
Ny is chosen to 5, leading to a learn sample containing 4 data and a test sample containing only one data
3. construct the four classifiers on the learning data set Db,L: ψb,k, k�LDA,CART,RF,kNN
4. compute the misclassification error of the classifiers on the test data set Db,T with nT rows

errb,k=
XnT
ℓ=1

1 ψk,c xb,Tℓð Þ≠ yb,Tℓf g for k�LDA,CART,RF,kNN

end
Averaging: compute the mean misclassification error for each classifier

errk=
1
B

XB
b=1

errb,k for k�LDA,CART,RF,KNN
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t-value in G'-E', and a value close to the critical value for
G'-E. An example is provided in Figure 7. In this exam-
ple, one may also suspect that the t-value of G'-E' is exces-
sively large, given the small value of the corresponding
jump (−0.12) compared with the jumps in G-E, G-G', and
G-E'. One way to reduce the occurrence of excessively
high t-values in G'-E' is to increase the critical value of
the test. For example if we set τα=2=2:58 (α=0:01), the
test result here becomes 0 and the initial configuration
becomes c=15, which has a higher probability in
Table A1 and is thus preferred.

The impact of using α=0:01 is further illustrated on
all tests with Figure 6b. Only nine change-points are now
assigned to group (G, E, E'), which is considerably smal-
ler than with α=0:05. Actually, 10 change-points moved
to group G and 9 to group (E, E'). This difference can be
understood by inspecting the distribution of t-values with
respect to the corresponding critical values (2.58 vs. 1.96).
Figure 4 shows that many t-values for E–E', G'-E, and
G'-E' are smaller than 2.58 in absolute value. When these
tests become insignificant, whereas the other three stay
significant, the predicted configuration becomes c=1 or
15, and when G'-E' remains significant or close to 2.58,
the predicted configuration becomes c=31 or 35. Addi-
tionally, many configurations with low probabilities
(c=3, 7, 17, 18, 32, 33) have also disappeared.

Figure 6c shows the impact of the (probability-based)
imbalanced sampling in the learning procedure. Overall,
the results for the main groups are not much different
compared with the balanced sampling. Two noticeable
differences emerge, however. First, group (G, E, E')
reduces only slightly in size, from 29 to 20. The smallness
of the impact is explained by the fact almost half of test
results are initially in Table A1 and are not changed by
the prediction. Second, almost all the configurations with
the lowest probabilities, such as c=7, 21, 32, 33, 38, with
p≤5:6×10−4, are removed. Other configurations, with
slightly higher probabilities, but still with p≤0:01, such as
c=3, 16, 17 (G, E') and c=29 and 34 (G, E), emerge or are
reinforced, which is not wanted.

Figure 6d shows the variant (d) where the aggregation
is based on the prior probabilities. The distribution is
quite different from that based on distance (Figure 6a):

more change-points are attributed to the preferred
groups, 62% in G and 19% in (E, E'), fewer to other
groups such as (G, E, E') and E, and many configurations
of low probability disappear. The distribution is actually
quite similar to that of variant (b), but in contrast to the
latter, this variant keeps a high power in the test (thanks
to α=0:05). As a result, with variant (d), group E is much
smaller than with variant (b). In this respect, variant
(d) is preferred among all four variants. Note, however,
that there is a limitation in the usage of the aggregation
procedure which holds for all variants: when there is
only one nearby station (30% of the cases), the aggrega-
tion has no impact and the final result is the one selected
by the prediction rule. In variant (d), this explains why
there are still configurations with a low probability
(c=8=22, 3, 31/35, 21, 38).

5 | CONCLUSIONS AND
PERSPECTIVES

We proposed a post-processing method for the attribution
of change-points detected by a segmentation scheme
involving multiple SDs (target minus reference). In our
application, the each of the stations provides a GNSS
series (G) and a reanalysis series (E). The segmentation is
run on the G-E series and the goal of the attribution
method is to predict if the inhomogeneity (jump in the
mean) is in G or E. The method proceeds along the fol-
lowing steps:

1. Data selection and pre-processing. For each detected
change-point in a main station (hereafter, the ‘main
change-point’): (a) select nearby stations with a hori-
zontal distance smaller than 200 km and height differ-
ence smaller than 500 m; (b) run the segmentation
method on the G'-E' for each nearby data and select
only homogeneous segments from the nearby to com-
pare with the main; (c) correct the nearby series, G'
and E', for the height difference with respect to the
main station, so that all four series (G, E, G', and E')
are representative of the same height; (d) form the six
SDs (G-E, G-G', etc.) and remove the outliers.

TABLE 3 Mean misclassification error ± one standard deviation, for the four classifiers in three scenarios: ‘balanced sample’ with
Ny=R=100 and α=0:05, ‘balanced sample’ and α=0:01, ‘imbalanced sample’ with Ny=npy and α=0:05.

c Test level Sample case LDA CART KNN RF

errc 0.05 Balanced 0.1463 ± 0.021 0.0142 ± 0.011 0.1412 ± 0.018 0.0049 ± 0.003

0.05 Imbalanced 0.1108 ± 0.004 0.0165 ± 0.010 0.0351 ± 0.004 0.0054 ± 0.004

0.01 Balanced 0.1424 ± 0.029 0.0210 ± 0.0417 0.1301 ± 0.022 0.0106 ± 0.033

Abbreviations: CART, classification and regression trees; KNN, k-nearest neighbours; LDA, linear discriminant analysis; RF, random forest.
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2. Test the significance of the jumps. For each main
change-point and each of the six series: (a) identify
the noise model; (b) fit a regression model including a
jump at the position of the main change-point when
at least n=200 consecutive points are available on the
left and right of the change-point, using an iterative
FGLS procedure; (c) test the significance of the jump
at the significance level α=0:05.

3. Use a predictive rule to predict the configuration. For
each nearby, the learned classifier will predict the
configuration (i.e., which of the G, E, G', and E' series
have a significant jump) corresponding to the six test
results. When several nearby series are used, a

weighted prediction score is computed to select the
final configuration.

The method has been applied to a real data set of
494 cases (114 change-points from 49 main stations
compared with 312 nearby stations). The data charac-
terization showed that the data have a strong heterosce-
dasticity, with mean annual seasonal variation in the
standard deviation around 70% (half-range), and a mod-
erate autocorrelation, with a typical lag-1 correlation
coefficient of 0.3. A FGLS test procedure was imple-
mented to ensure an accurate inference. The predictive
rule has been trained on the real data. Several

FIGURE 6 Distribution of the final predicted configurations, after aggregation, from the real data with the random forest method. The

numbers in colour bars refer to the configuration number c among the 38 cases displayed in the RSD Table (Table A1). Results are plotted

for four cases: (a) balanced sample learning with α=0:05 and aggregated by distance, (b) balanced sample with α=0:01 and aggregated by

distance, (c) imbalanced sample with α=0:05 and aggregated by distance, and (d) balanced sample with α=0:05 and aggregated by prior

probability. [Colour figure can be viewed at wileyonlinelibrary.com]
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classifiers have been compared for the predictive rule
and the RF was selected.

To our knowledge, both the FGLS regression test
approach and the RF classifier have never been used in
the context of climate series homogenization.

The FGLS tests and the classification results of the
studied data set have been assessed using (i) our expertise
of the data set (formulated out in two probabilistic rules)
and (ii) metadata informing about known equipment
changes at the GNSS sites. Very consistent and plausible
results were found from both the FGLS tests and the clas-
sification. With a significance level of 5% and employing
a balanced sample for the learning step in the predictive
rule, as well as aggregating results from nearby sources
based on prior probability, the findings clearly indicate
predominance of significant jumps in the series involving
G (62%), (E, E') (19%), and (G, E, E') (10%) as expected

from the probabilities in Table A1. The remaining 9% of
unexpected results are thought be linked with low detec-
tion power of the FGLS test when the noise is large
(e.g., due to large distance between the main station and
the nearby) and possibly random errors in the classifica-
tion due to the smallness of the learning sample.

Some possibilities to further improve the method are:
(i) to use a bigger data set to improve the predictive
method, (ii) to refine the nearby selection rules to
improve the robustness and the power of the test proce-
dure (e.g., select nearby series with smaller percentage of
gaps, shorten the distance between the main station and
nearby), (iii) compute the critical value used in the FGLS
test from a more realistic empirical distribution. These
options will be tested in a future work.

The next step in the homogenization procedure is the
correction of jumps. In the case of jumps attributed to G,

FIGURE 7 Example of test result for station FAIR (Fairbanks, Alaska) with nearby station CLGO at a distance of 21 km. The series of

integrated water vapour differences are shown in grey. The black vertical solid line shows the change-point detected in G-E by the

segmentation (4 October 2017). The blue triangles indicate known equipment changes in the main station from the Global Navigation

Satellite System metadata. The horizontal red lines show the means estimated by the feasible generalized least squares regression on the left

and the right of the change-point in each series. [Colour figure can be viewed at wileyonlinelibrary.com]
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the correction will be applied to the initial G series only,
for example, by correcting segments back in time, leaving
the most recent segment unchanged (Nguyen et al., 2021;
Van Malderen et al., 2020). A similar method can be
applied to the E and E' series, if one is interested in cor-
recting the reanalysis time series. In cases where jumps
are attributed to (G, E, E'), a method for splitting the esti-
mated jump into G and E components needs to be devel-
oped. This is planned in a future work.
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APPENDIX A: TEST TABLE

The purpose of Table A1 is to help attribute the origin of
jumps in the BS (G, E, G', E') given the test results per-
formed on the six SDs (G-E, G'-E', G-G', G-E', G'-E, E–E').
To build this table, we only consider the sign of the
jumps, that is, jump amplitudes in the BS are coded on
three values: 0 (no jump), +1 (upward jump), and −1
(downward jump). The corresponding jump amplitudes
in the six SDs are logically coded on five levels (0, 1,
2, −1, and −2). They are presented in the SD Table. How-
ever, this table cannot be used in practice, because a test
result will be either ‘reject’ or ‘fail to reject’ which, com-
bined with the sign of the jump, leads to three levels only
(−1, 0, +1). Hence, it is the RSD Table that will be used.

The BS Table lists 54 combinations of the four BS
jumps. The combinations with G = 0 and E = 0 are not
represented because we only consider cases when a
change-point was detected in the G-E series by the seg-
mentation method. One difficulty arises from the fact
that some combinations of the BS Table (e.g., 1 and 18)
lead to the same configurations in SD and RSD
Table (highlighted by a coloured background) which thus
contain only 46 and 38 unique configurations, respec-
tively. In practice, the duplicates are sorted out based on
the probabilities attributed to the corresponding combi-
nations of jumps in the BS (see Supplement S1).

NGUYEN ET AL. 2085

 10970088, 2024, 6, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8441 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2020EA001121
https://www.clim-past.net/8/89/2012/
https://journals.ametsoc.org/view/journals/apme/49/12/2010jamc2376.1.xml
https://journals.ametsoc.org/view/journals/apme/49/12/2010jamc2376.1.xml
https://doi.org/10.1002/joc.8441


T
A
B
L
E

A
1

T
es
t
T
ab
le
:(
le
ft
)
54

re
le
va
n
t
co
m
bi
n
at
io
n
s
of

th
e
ju
m
ps

in
th
e
fo
ur

ba
se

se
ri
es

(G
,E

,G
',
E
'),

co
de
d
on

th
re
e
va
lu
es

(0
=
n
o
ju
m
p,

−
1
=
do

w
n
w
ar
d
ju
m
p,

+
1
=
up

w
ar
d
ju
m
p)
,

an
d
as
so
ci
at
ed

co
n
di
ti
on

al
an

d
jo
in
t
pr
ob

ab
ili
ti
es

(s
ee

Su
pp

le
m
en

t
S1
).
[C

ol
ou

r
ta
bl
e
ca
n
be

vi
ew

ed
at

w
ile

yo
n
lin

el
ib
ra
ry
.c
om

]

N
ot
e:
(M

id
dl
e)

re
su
lt
in
g
ju
m
p
am

pl
it
ud

es
in

th
e
si
x
se
ri
es

of
di
ff
er
en

ce
s
(G

-E
,G

-G
',
…
),
co
de
d
on

fi
ve

le
ve
ls
(−

2,
−
1,
0,
1,
2)
.(
R
ig
h
t)
ju
m
p
am

pl
it
ud

es
in

th
e
se
ri
es

of
di
ff
er
en

ce
s
co
de
d
on

th
re
e
le
ve
ls
on

ly
(−

1,
0,
+
1)
.T

hi
s
ta
bl
e
ca
n
se
rv
e

to
at
tr
ib
ut
e
th
e
or
ig
in

of
ju
m
ps

in
th
e
ba
se

se
ri
es

gi
ve
n
th
e
te
st
re
su
lt
s
pe
rf
or
m
ed

on
th
e
si
x
se
ri
es

of
di
ff
er
en

ce
s.
D
up

lic
at
es

in
th
e
te
st
re
su
lt
s
(h
ig
h
lig

ht
ed

w
it
h
co
lo
ur
ed

ba
ck
gr
ou

n
d)

ar
e
so
rt
ed

ou
t
ba
se
d
on

th
e
co
rr
es
po

n
di
ng

pr
ob

ab
ili
ti
es
.

2086 NGUYEN ET AL.

 10970088, 2024, 6, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8441 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com

	A statistical method for the attribution of change-points in segmented Integrated Water Vapor difference time series
	1  INTRODUCTION
	2  DATA CHARACTERIZATION
	2.1  Data preparation
	2.2  Data characterization

	3  PROPOSED TESTS FOR A FIXED CHANGE-POINT
	3.1  Regression model and inference
	3.2  Application to real data

	4  PREDICTIVE RULE
	4.1  Preliminary considerations
	4.1.1  Considered test results
	4.1.2  Considered configurations
	4.1.3  The four considered learning algorithms
	4.1.4  Building of the complete synthetic data set

	4.2  The proposed cross-validation bootstrap procedure
	4.3  Application to the real data set

	5  CONCLUSIONS AND PERSPECTIVES
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES
	APPENDIX A TEST TABLE


