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Abstract. Integrated Water Vapour (IWV) measurements from similar or different techniques are often inter-compared for 10 

calibration and validation purposes. Results are usually assessed in terms of bias (difference of the means), standard deviation 

of the differences, and linear fit slope and offset (intercept) estimates. When the instruments are located at different elevations, 

a correction must be applied to account for the vertical displacement between the sites. Empirical formulations are traditionally 

used for this correction. In this paper we show that the widely-used correction model based on a standard, exponential, profile 

for water vapour cannot properly correct the bias, slope, and offset parameters simultaneously. Correcting the bias with this 15 

model degrades the slope and offset estimates, and vice-versa. This paper proposes an improved correction model which 

overcomes these limitations. The model uses a multi-linear regression of slope and offset parameters from a radiosonde 

climatology. It is able to predict monthly parameters with a root-mean-square error smaller than 0.5 kg m-2 for height 

differences up to 500 m. The method is applied to the inter-comparison of GPS IWV data in a tropical mountainous area and 

to the inter-validation of GPS and satellite microwave radiometer data. This paper also emphasizes the need for using a slope 20 

and offset regression method that accounts for errors in both variables and for correctly specifying these errors. 

1 Introduction 

Water vapour plays a key role in many meteorological processes and in the hydrological cycle of the Earth’s atmosphere. 

Because it is extremely heterogeneous and variable, many operational and research observing techniques have been developed 

over the years to sense its horizontal, vertical and temporal variability. Among the various high-performing techniques, one 25 

may cite in-situ measurements with radiosonde balloons and remote sensing techniques exploiting different domains of the 

electromagnetic spectrum, namely Fourier Transform Infrared Radiometers (FTIR), near-infrared, visible, and ultraviolet 

radiometers and spectrometers, as well as microwave radiometers (MWRs) and microwave measurements from Global 

Navigation Satellite Systems (GNSS). Integrated Water Vapour (IWV) measurements from ground-based and space-based 

platforms are often compared to assess each other’s accuracy, e.g. detect biases and/or long term drifts (Bokoye et al., 2003; 30 
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Morland et al., 2006a,b; Bock et al., 2007; Bokoye et al., 2007; Morland et al., 2009; Sussmann et al., 2009; Bedka et al., 2010; 

Palm et al., 2010; Schneider et al., 2010; Vogelmann et al., 2011; Buehler et al., 2012; Cimini et al., 2012; Bock et al., 2014; 

Van Malderen et al., 2014; Courcoux and Schröder, 2015; Schröder et al., 2016; Bock et al., 2021), as well as for inter-

calibration purposes, e.g. adjusting biases from instruments on successive space-based platforms (Du et al., 2014; Mears et al., 

2015; Wentz, 2015; Bennartz, 2017; Mears et al., 2018; Ho et al., 2018; Schröder et al., 2019). In this context, it is frequent 35 

that IWV measurements from sites at different elevations need to be compared (e.g., Bock et al., 2005; Morland et al., 2006b; 

Buehler, 2012; Van Malderen et al., 2014). Because, the water vapour concentration in the atmosphere is decreasing by several 

orders of magnitude between the surface and the upper troposphere, a vertical correction is required to conform the 

measurements from sites at different altitudes, or between point observations and aerial averages such as derived from 

atmospheric models (Bock et al., 2005, 2007; Morland et al., 2006a; Buehler et al., 2012; Bock et al., 2014). While many 40 

studies have recognized that a height difference results in a systematic difference (bias) in the IWV measurements, few have 

applied a correction, and even fewer have recognized that the height difference also impacts the linear fit slope and offset 

estimates. To our knowledge, only Bock et al., 2005, Morland et al., 2006a, b, Buehler et al., 2012, and Van Malderen et al., 

2014, addressed these points. Van Malderen et al., 2014, experienced that applying a scaling factor for correcting the bias is 

degrading the slope estimate. Buehler et al., 2012, analysed the impact of height difference on the slope estimate using 45 

radiosonde data and proposed to use this estimate to correct the IWV data. We will follow a similar methodology in this paper 

with an improved model. Among the correction models that have been proposed by various authors, two approaches have been 

traditionally used. The first, and most widely used one, is based on a proportional correction term, with takes its roots in the 

assumed exponential decrease of water vapour concentration with height. This model is described in Appendix A. It makes 

use of the assumption of a constant vertical decay rate of water vapour, 𝛾. At least three studies have applied this correction 50 

model with nearly similar experimental values for 𝛾; namely, Bock et al., 2005, proposed 𝛾 = 4∙ 10−4 m-1 for the Alps, Morland 

et al., 2006b, proposed 𝛾  = 4.7 ∙ 10−4  m-1 also for the Alps, and Buehler et al., 2012, proposed 𝛾 = 3.5 ∙ 10−4  m-1 for 

Antarctica. These models have been claimed by their authors to be valid for height differences up to 500 m. The second 

approach, proposed by Mears et al., 2015, is based on the observed sea surface temperature and a constant relative humidity 

of 80%. They applied this model for the inter-comparison of satellite-based MWR measurements with ground-based Global 55 

Positioning System (GPS) stations with elevations usually less than 100 m, and one exceptional case above 500 m for which 

it still worked well. Both approaches have been shown to provide acceptable reductions of the differential IWV biases. 

In this paper, we show that the exponential correction cannot simultaneously achieve a proper correction for the bias 

and for the slope and offset parameters. To overcome this limitation, we propose an improved vertical correction method based 

on multi-linear regression from a radiosonde climatology. Another aspect discussed in this paper is the impact of errors in both 60 

variables on the slope and offset estimates. Contrary to trend estimation, where a physical variable is regressed on time (a 

quantity known with negligible error), the linear regression between two measurements which are both subject to errors 

requires a more subtle estimation method. Indeed, it has been shown that in this situation, the ordinary least-squares (OLS) 

regression leads to biased estimates of the slope and offset (Draper and Smith, 1998). This problem has clearly been overlooked 
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in the aforementioned IWV intercomparison literature. This may be at least one reason for the variety of slope results found in 65 

these studies (with slope being either bigger or smaller than one). Comparing slope and offset results from different studies, 

such as done, e.g., in Buehler et al., 2012, may therefore be hazardous as different and sometimes wrong regression methods 

have been used. Only few of these studies stated explicitly that they used a regression method accounting for errors in both 

variables (e.g., Buehler et al., 2012; Bock et al., 2014, 2021). Using such a method also poses the problem of correctly 

specifying the uncertainties in both variables. Lack of such information for some of their data sets led Buehler et al., 2012, to 70 

apply OLS regression and to state that constant error estimates do not affect the regression results, which is wrong (see 

Appendix C). Instead, Bock et al., 2014 and 2021, used approximate error estimates, e.g. 5% or 10% for radiosonde or satellite 

data, rather than assuming no errors in the x variable. In this paper, we use the three-way error analysis of O’Carroll, et al., 

2008, to specify the uncertainties of our data sets, and the regression method of York et al., 2004, which accounts for errors in 

both variables. 75 

 Section 2 of this paper reviews the impact of a height difference on the bias, slope, and offset estimates in the case of 

an idealized exponentially decaying water vapour density profile and in the case of a real atmosphere observed by radiosondes. 

The similarities and differences implied by two types of profiles are highlighted. Section 3 proposes an improved vertical 

correction method based on a multiple linear regression approach, instead of using one single 𝛾 parameter as done in past 

studies. The method builds on a climatology derived from radiosonde data. In Section 4 we discuss two application examples 80 

where IWV measurements from a network of GPS stations in a tropical mountainous area are to be inter-compared and used 

for the inter-validation with collocated satellite MWR measurements. Both applications make use of the new method and the 

derived radiosonde climatology. Section 5 discusses further applicability of the method and concludes. 

2 Variation of bias, slope, and offset parameters as a function of height difference 

2.1 Idealized case of an exponentially decaying water vapour density profile 85 

Before analysing the results from real data, it is instructive to consider the idealized case of a water vapour density profile 

decaying exponentially with height (Eq. (A1)). This model has often been used to describe the state of the mean atmosphere 

(e.g., ITU, 2017) and is related to the notion of water vapour scale height (see Appendix A).  

Let us consider the situation of two instruments, A and B, located at sites with different heights, ℎ𝐴 and ℎ𝐵, which are 

observing IWV in an idealized atmosphere described by Eq. (A1). In the absence of any instrumental bias and noise, the IWV 90 

observations are related by: 

𝐼𝑊𝑉𝐵 = 𝐼𝑊𝑉𝐴 × exp(−𝛾(ℎ𝐵 − ℎ𝐴)) ,         (1) 

where 𝛾 > 0 is the vertical decay rate of water vapour, which is related to the water vapour scale height by the relation 𝐻𝑣 =

1/𝛾. If ℎ𝐵 > ℎ𝐴 we have 𝐼𝑊𝑉𝐵 < 𝐼𝑊𝑉𝐴, i.e. the IWV content at higher altitude is lower than the IWV content at lower altitude. 

If the observations from station A and B are directly compared without any correction, we will observe a negative bias, ∆=95 
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𝐼𝑊𝑉𝐵 − 𝐼𝑊𝑉𝐴 < 0, a slope smaller than one, 𝛼 < 1, and a null offset, 𝛽 = 0, where the slope and offset are estimated by a 

linear regression using the model 𝑦 = 𝛼𝑥 + 𝛽, with 𝑦 = 𝐼𝑊𝑉𝐵 and 𝑥 = 𝐼𝑊𝑉𝐴 (see Appendix B). 

To be a bit more general, we can assume that the observations contain some amount of random noise and consider 

that we have 𝑛 pairs of observations, (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1. . 𝑛, from which the bias, slope and offset parameters are estimated. The 

bias writes: 100 

∆=
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)
𝑛
𝑖=1 = 𝜇𝑦 − 𝜇𝑥 ,          (2) 

where 𝜇𝑥 and 𝜇𝑦 denote the sample means of the two data series. From Eq. (1), and introducing 𝑓(∆ℎ) = exp(−𝛾∆ℎ), with 

∆ℎ = ℎ𝐵 − ℎ𝐴, the bias can be expressed as: 

∆= −𝜇𝑥 × [1 − 𝑓(∆ℎ)] = −𝜇𝑥 × [1 − exp(−𝛾∆ℎ)] ≈ −𝜇𝑥𝛾∆ℎ,       (3) 

The first right-hand side (rhs) will be used later to describe the more general atmospheres. The second rhs is valid only in the 105 

case of the exponentially decaying water vapour profile. It expresses that the bias is proportional to the mean IWV content at 

the reference site, 𝜇𝑥, and that it is negative given that 𝛾 > 0 and ∆ℎ > 0. The last rhs, is the approximate relation valid for a 

thin layer (typically, |∆ℎ| < 200 m, see Appendix A), and expresses that, to the first order, the bias is proportional to 𝜇𝑥, 𝛾, 

and ∆ℎ. This last expression has been used in past studies (e.g., Bock et al., 2005; Buehler et al., 2012) to estimate the vertical 

moisture decay rate, �̂� = −∆ × (𝜇𝑥∆ℎ)
−1, and to correct IWV observations for the height difference between sites. The slope 110 

and offset parameters estimated from the linear regression establish a second relation between 𝜇𝑥 and 𝜇𝑦 given by Eq. (B3), 

which can be rewritten in the case of the exponential water vapour profile as: 𝜇𝑦 = 𝛼𝜇𝑥 + 𝛽 = 𝜇𝑥 × 𝑓(∆ℎ). Since this relation 

must be valid for any 𝜇𝑥, it comes out that: 

𝛼 = 𝑓(∆ℎ) = exp(−𝛾∆ℎ) ≈ 1 − 𝛾∆ℎ,         (4a) 

𝛽 = 0.              (4b) 115 

The second rhs of Eq. (4a) expresses that 𝛼 < 1, given that ∆ℎ > 0, and the third rhs that, to the first order, 𝛼 decays linearly 

with the height difference, with a rate equal to 𝛾. 

Figure 1 illustrates the main characteristics of the bias and slope variations with height in the case of the idealized 

exponential water vapour profile, along with the asymptotic limits and the thin layer linear approximations. It is important to 

note that not only the bias is changing when the depth of the atmospheric layer ∆ℎ is changing (|∆| is increasing when |∆ℎ| is 120 

increasing), but also the slope (|𝛼 − 1| is increasing when |∆ℎ| is increasing).  

Equations (3) and (4a) recall also that both the bias and slope parameters depend on the atmospheric profile through 

the 𝛾 parameter which may be of relatively local nature and may thus be changing from one region to another and varying with 

time, e.g. seasonally. Moreover, in real atmospheres, the vertical distribution of water vapour is expected to be more complex 

than represented by an exponential model with a constant vertical decay rate. 125 
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2.2 Real case from radiosonde observations 

Figure 2 illustrates the monthly mean water vapour profiles observed by a tropical radiosonde station (Le Raizet, Guadeloupe, 

France, WMO code 78897), over the year 2020. It can be seen that the water vapour is decaying approximately exponentially, 

although the vertical decay rate is not strictly constant as a function of height and time. This model is nevertheless reasonable 130 

in the lower troposphere, e.g., from the surface up to a height of 2 km (Fig. 2b). In this altitude range, we expect Eq. (1) to be 

a good approximation of the vertical variation of IWV. Figure 2c illustrates the link between 𝑥 = 𝐼𝑊𝑉(ℎ𝑠) and 𝑦 = 𝐼𝑊𝑉(ℎ𝑠 +

∆ℎ) , where 𝐼𝑊𝑉(ℎ𝑠) = ∫ 𝜌𝑣(ℎ)𝑑ℎ
∞

ℎ𝑠
 and 𝐼𝑊𝑉(ℎ𝑠 + ∆ℎ) = ∫ 𝜌𝑣(ℎ)𝑑ℎ

∞

ℎ𝑠+∆ℎ
, and where 𝜌𝑣(ℎ)  is the observed radiosonde 

water vapour profile, ℎ𝑠 is the station height, and ∆ℎ is varied between 200 m and 1000 m by step of 200 m. For each layer,∆ℎ, 

the points (𝑥, 𝑦) align roughly on a straight line. For ∆ℎ = 200 m, the line is closest to the 1:1 line (shown in grey) and the 135 

scatter around the best fit line is the smallest (RMSE = 0.224 kg m-2), while for ∆ℎ = 1000 m, the line is farthest from the 1:1 

line and the scatter around the best fit line is the largest (RMSE = 0.976 kg m-2). It is interesting to note that for a given 

layer,∆ℎ, the points remain close to the straight line throughout the year, despite the quite large seasonal excursion in IWV 

shown by the different colours in the figure. The data points for March are shown as light blue dots and the data points for 

September as orange dots. These two months show the smallest and largest mean IWV values,  𝜇𝑥, of 33 kg m-2 and 51 kg m-2, 140 

respectively.  

Figure 3 shows the variations of the bias, offset, and slope parameters fitted from these data, as a function of ∆ℎ. The 

bias (Fig. 3a) and the fractional bias (∆ 𝜇𝑥⁄ ) (Fig. 3d) follow reasonably well the exponential decay predicted by the second 

rhs of Eq. (3), but the lines do not actually align perfectly from one month to another, because of the small seasonal variations 

in the humidity profile. The monthly variation is even more visible in the slope and offset plots (Figs. 3b and c). However, 145 

each monthly curve for the slope may be reasonably well modelled by an exponentially decaying function described by the 

second rhs of Eq. (4a). Regarding the offset, the purely exponentially decaying water vapour profile predicts 𝛽 = 0, which is 

clearly not verified in the real atmosphere. However, all three parameters together follow the relationship described in 

Appendix B, i.e. 𝛼 < 1 and ∆< 0 implies that 𝛽 > ∆. Figure 3c, shows that 𝛽 actually follows closely the variation of ∆ as a 

function of ∆ℎ, while verifying 𝛽 > ∆. Figures 3b and 3c, also recall that the slope and offset estimates are correlated to each 150 

other, i.e. higher slopes are associated with smaller offsets (Walpole et al., 2012). Figures 3e and f show the standard errors of 

the 𝛼 and 𝛽 parameters estimated by OLS, given by Eqs. (C4) and (C5a, b). They are increasing with ∆ℎ as expected from the 

increased scatter of the post-fit residuals (Fig. 2c). In the next Section we will establish a model describing the behaviour of 𝛼 

and 𝛽 as a function of ∆ℎ that will be used to correct the observations 𝑥 made at a height ℎ𝐴 to conform to the observations 𝑦 

made at height ℎ𝐵 = ℎ𝐴 + ∆ℎ. 155 
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3. Derivation of an empirical correction model from radiosonde observations  

In the previous Section we have seen that the bias, ∆, and the slope, 𝛼, are dependent on the depth, ∆ℎ, of the layer between 

the two considered IWV observations. Especially, |∆| and |𝛼 − 1| are both increasing when |∆ℎ| is increasing, both in the real 

and in the idealized, exponentially decaying, atmosphere. Whereas the offset 𝛽 = 0 in the idealized atmosphere, it is generally 

𝛽 ≠ 0 in the real atmosphere. The main difference between the idealized and real atmospheres is that the vertical moisture 160 

decay rate 𝛾 is dependent on the height (and time) in the latter, whereas it is by definition constant in the former (although a 

time variation could also be modelled in the idealized atmosphere). We must thus derive a correction formula based on a more 

complex model than just a constant 𝛾. Moreover, a pure rescaling correction, 𝑥𝑐 = 𝑓𝑐(∆ℎ) × 𝑥, as discussed in Appendix B, 

does not allow to correct simultaneously the bias and slope, and does not change the offset. Instead, we propose to use a linear 

correction model such as expressed by Eqs. (B8) and (B9). Therefore, we need good estimates for both 𝛼 and 𝛽, which are 165 

generally not known at the location and time of interest but may be derived from a climatology. Hereafter, we propose to use 

high-resolution radiosonde observations to derive such a climatology. 

The proposed approach is to model the slope and offset with two independent functions of ∆ℎ: 

−log(𝛼) = 𝐴(∆ℎ),            (5a) 

𝛽 = 𝐵(∆ℎ),             (5b) 170 

which are represented by polynomials: 

𝐴(∆ℎ) = ∑ 𝑎𝑖∆ℎ
𝑖𝑝

𝑖=1            (6a) 

𝐵(∆ℎ) = ∑ 𝑏𝑖∆ℎ
𝑖𝑞

𝑖=1            (6b) 

Note that the polynomials have no intercepts in order to satisfy the constraints 𝐴(0) = 0 and 𝐵(0) = 0. Figures 3b and 3c 

suggest that the order of the polynomials does not need to be very high. For example, coefficient 𝑎1 can be identified with the 175 

vertical moisture decay rate, 𝛾, in analogy with Eq. (4a). The higher order terms help to model the deviations from linearity 

observed in Fig. 3b and 3c. 

The estimates of the polynomial coefficients, for each of the two models, are derived by a linear regression method, 

according to the generic linear model equation: 𝒛 = 𝑿𝜽, where 𝒛 is the vector of dependent variables, 𝑿 the design matrix, and 

𝜽 the vector of parameters (Walpole et al., 2012). The elements, 𝑧𝑘, of vector 𝒛 correspond either to the observed slope values, 180 

−log(𝛼𝑘), or to the offset values, 𝛽𝑘, for thedifferent layers, ∆ℎ𝑘, 𝑘 = 1. .𝑚. The elements of the design matrix are 𝑋𝑖𝑘 =

(∆ℎ𝑘)
𝑖, and the parameters 𝜃𝑖 = 𝑎𝑖, with 𝑖 = 1. . 𝑝, in the case of the slope model, and 𝜃𝑖 = 𝑏𝑖, 𝑖 = 1. . 𝑞, in the case of the 

offset model. Note that here we estimate the slope and offset coefficients independently of each other. Another approach might 

be to consider both variables simultaneously in a multivariate linear regression (Christensen, 2001) which is possible here 

since both variables are described by similar functional models, (6a) and (6b). A few tests of this approach revealed that both 185 

the estimates and their standard errors were identical to the monovariate solutions. So we decided to stay with the monovariate 

linear regression approach which is simpler to implement and faster to run. 
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The quality of the fitted models depends on the number of observations, 𝑚, and the choice of the polynomial orders, 

𝑝 and 𝑞. Indeed, larger layers would require to include higher order terms to adequately fit the deviations from linearity. The 

number of observations depends on the vertical sampling of the radiosonde profiles. Since we are using high-resolution 190 

radiosonde data, we can set a regular vertical sampling of ∆ℎ=25 m, i.e. ∆ℎ𝑘 = 𝑘 × ∆ℎ. Considering two different maximal 

thicknesses of ∆ℎ𝑚 = 500 m and ∆ℎ𝑚 = 1000 m, this leads to 𝑚=20 and 𝑚=40, respectively.  

The order of the polynomials can be either fixed to predetermined values or determined automatically by a stepwise 

linear regression method (Hocking, 1976). The stepwise regression selects the best model by adding/removing terms to/from 

the model. The selection can be based on the p-value of the F-statistic associated to the change in the sum of squared errors 195 

(SSE) that results from adding or removing a term. Other types of criteria such as the Akaike Information Criterion (AIC), the 

Bayesian Information Criterion (BIC), or the adjusted coefficient of determination �̅�2, can be used as well (Draper and Smith, 

1998). A few trials with different values for 𝑝 (resp. 𝑞), revealed that all the aforementioned criteria (SSE, AIC, BIC, and  �̅�2) 

lead to very consistent results, and that the quality of the model is generally improved when 𝑝 (resp. 𝑞) is increased. However, 

we also noticed that when 𝑝 > 5 (resp. 𝑞 > 5), the regression failed due to poor conditioning of the normal matrix, 𝑿𝑇𝑿. We 200 

consequently limited the regression to maximum orders 𝑝 = 5 (resp. 𝑞 = 5). The SSE criterion was used with the following 

limits for the p-values: when pval < 0.05, the term is added during the forward step, while when pval > 0.10 the term is removed 

during the backward step. This method is, e.g., implemented in the stepwiselm function available in Matlab (2017). 

Another aspect of the implementation of the linear regression method is whether we consider the data as 

homoscedastic (the observations have constant variance) or heteroscedastic (the observations have different variance). Figures 205 

3e and 3f suggest that a heteroscedastic model is plausible: the standard errors, 𝜎𝑘,𝛼 and 𝜎𝑘,𝛽, of the “observations”, 𝛼𝑘 and 

𝛽𝑘, are generally increasing with 𝑘. Heteroscedasticity can be simply accounted for by specifying a diagonal weight matrix, 

𝑾, where the diagonal elements are 𝑊𝑘𝑘 = 𝑤𝑘,𝛼 for the slope and 𝑊𝑘𝑘 = 𝑤𝑘,𝛽 for the offset, which are computed here from 

the standard errors, i.e., 𝑤𝑘,𝛼 = (𝜎𝑘,𝛼/𝛼𝑘)
−2 and 𝑤𝑘,𝛽 = (𝜎𝑘,𝛽)

−2. Note that the relative standard error is used in the case of 

the slope, because we use log(𝛼) and not 𝛼 in the regression. 210 

We conducted a large number of trials for different values of the model parameters: 𝑝 = 1. .5, 𝑞 = 1. .5, 𝑚=20 and 

𝑚=40 (maximum layer depths of 500 and 1000 m), weighted or un-weighted regression, and different data sets: monthly or 

yearly input data (i.e. 𝛼 and 𝛽 fitted month by month or from a full year of radiosonde profiles). We also compared the 

regression results from different radiosonde stations to assess the robustness of the method as well as the spatial variability of 

the fitted parameters. The results from the different trials were inter-compared on the basis of two quality criteria: the standard 215 

error of the regression, also called the root mean square error (RMSE), and the standard error (SE) of the estimates (Draper 

and Smith, 1998). The RMSE quantifies the dispersion of the observed values, 𝑧𝑘, around the predicted values, �̂�𝑘, adjusted 

for the degrees of freedom: 

𝑠𝑒 = [
1

𝑚−𝑝
∑ �̂�𝑘
𝑚
𝑘=1 ]

1/2

            (7) 
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where �̂�𝑘 = 𝑧𝑘 − �̂�𝑘 is the prediction error and 𝑚 − 𝑝 is the degrees of freedom in the case of the slope (𝑚− 𝑞 in the case of 220 

the offset). The SE of the estimates is obtained from the variance-covariance matrix 𝑸: 

𝑆𝐸(𝜃𝑖) = 𝜎𝑒 × (𝑄𝑖𝑖)
1/2           (8) 

where 𝜎𝑒 is the standard deviation of the errors in the “observations”, an estimate of which is given by �̂�𝑒 = 𝑠𝑒, and 𝑸 depends 

only on the regressors, 𝑿𝒊, and the weights, 𝑊𝑘𝑘. In the case of the OLS, 𝑸 = (𝑿𝑇𝑿)−1, while in the case of the weighted 

least-squares (WLS), 𝑸 = (𝑿𝑇𝑾𝑿)−1. It is straightforward to show that in the case of OLS, a simple polynomial model such 225 

as expressed by Eq. (6a) and limited to the order 𝑝 =1, leads to (𝑋11)
2 ≈

𝑚3

3
∆ℎ2 when the terms in 𝑚2 and smaller order are 

neglected. This result indicates that the SE of the parameters varies as 𝑚−3/2 . We may thus expect some benefit from 

performing the regression over more elevated layers, e.g. with 𝑚=40 compared to 𝑚=20, although the final SE also depends 

on the standard error of the regression, 𝑠𝑒, which may be increasing when more elevated layers are included.  

The results obtained from the trials are summarized below: 230 

 The RMSE is decreased when the order of the model (𝑝 or 𝑞) is increased. This result is expected as a higher order model 

better fits the real data. 

 The RMSE is increased with WLS compared to OLS. This is a statistical property of OLS compared to WLS, i.e. OLS 

generally better fits the original data than WLS (Draper et al., 1998). 

 The SE of the estimates is increased when the order of the model is increased. This result is expected from the fact that 235 

more parameters are estimated with the same number of observations.  

 The SE of the estimates is decreased with WLS compared to OLS. This result is expected because OLS is no longer the 

best linear unbiased estimator when the errors in the data are not equal (Draper et al., 1998). 

 Both the RMSE and the SE are increased when more elevated layers (up to 1000 m compared to 500 m) are considered, 

despite the increase in the number of observations (𝑚=40 compared to 𝑚=20). 240 

The above results were found valid for both variables (𝑧𝑘 = −log(𝛼𝑘) and 𝑧𝑘 = 𝛽𝑘), both time samplings (monthly and 

yearly), and also the different stations considered. They suggest to use preferably high order polynomials (e.g., 𝑝 = 𝑞 = 5), 

WLS estimation, and a limited vertical extent of the regression (e.g. 500 m). 

Figure 4 shows the estimates for parameters 𝑎1 and 𝑏1, to illustrate the variability in time and space, at three stations 

located in the Caribbean region (78526 is located 531 km to the north-west from 78897, on Puerto-Rico island, and 78954 is 245 

located 417 km to the south from 78897, on Barbados island). The temporal variations at each of the three sites are significant 

(compared to the error bars) but correlated between the sites. These results indicate that: (i) it may be preferable to use monthly 

regression coefficients rather than yearly, and (ii) the radiosonde climatology derived from one site may be applied to distant 

sites to some extent (e.g. a few hundreds of kilometres apart). We further checked the first point by analysing the bias after 

correction, ∆𝑐= 𝜇𝑦 − 𝜇𝑥,𝑐, as a function of the height difference, ∆ℎ, for monthly and yearly coefficients. The correction model 250 
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is expressed by Eqs. (B8) and (B9), where 𝑓𝑐 and 𝑔𝑐 are derived from the predicted values for �̂� and �̂� according to Eqs. (5) 

and (6): 

𝑓𝑐 = exp(−∑ �̂�𝑖∆ℎ
𝑖𝑝

𝑖=1 )            (9a) 

�̂�𝑐 =∑ �̂�𝑖∆ℎ
𝑖𝑞

𝑖=1             (9b) 

Figure 5 compares the IWV correction errors for monthly and yearly coefficients, �̂�𝑖 and �̂�𝑖, fitted by WLS, with 𝑝 = 𝑞 = 5. 255 

Larger dispersion is clearly observed with the yearly model, with significant seasonal variation with an amplitude increasing 

with ∆ℎ.  

Figure 6 gives more information for the model with monthly coefficients. The monthly mean bias remains negligible, 

|∆𝑐| < 0.02 kg m-2, and independent of the height difference, which demonstrates that the correction model is well fitted. The 

standard deviation is increasing with the height difference up to 0.5 kg m-2 when ∆ℎ = 500 m (this quantifies the dispersion 260 

observed in Fig. 5a). The slope and offset after correction are significantly improved and get very close to the ultimate objective 

(𝛼𝑐 = 1 and 𝛽𝑐 = 0). In conclusion, the proposed correction method is able to reduce almost perfectly the impact of the height 

difference on the IWV observations and achieve ∆𝑐≈ 0, 𝛼𝑐 ≈ 1, and 𝛽𝑐 ≈ 0, when monthly coefficients are used. 

4. Applications 

4.1 GPS vs. GPS inter-comparison  265 

We will consider here the case of the permanent GPS network in Guadeloupe analysed by Bock et al., 2021. It is composed of 

15 stations located on 4 islands, in a region bounded by 62°W - 61°W and 15.75°N - 16.75°N. The station elevations range 

from 1 m to 418 m (see Table 1). The ultimate goal of this inter-comparison is to determine the consistency between the IWV 

measurements from these GPS stations and to check for biases and non-linearities. Therefore, the IWV data need to be 

corrected for the height differences. We will here consider both the simple scaling factor model, based on (A5), and the new 270 

model based on (9a) and (9b). These correction models will be referred to as v1 and v2 in the following, and the uncorrected 

data will be denoted v0. The model coefficient in v1 is taken to 𝛾 = 4 ∙ 10−4 m-1 consistent with Bock et al., 2007, for the 

tropics. In v2, we will use the coefficients determined from the radiosonde climatology derived in the previous section from 

the radiosonde station 78897 which is located on the Guadeloupe island, close to the GPS station ABMF. The bias, slope, and 

offset parameters derived from the inter-comparisons for the different data versions will be denoted ∆𝑣, 𝛼𝑣, and 𝛽𝑣, with 𝑣 =275 

0, 1, 2, respectively. 

Figure 7 shows the results of the inter-comparison of two stations at very different elevations: ABMF, ℎ𝐴 = 15 m, and 

HOUE, ℎ𝐵 = 418 m. It is seen that the initial bias of ∆0= −7.29 kg m-2, is quite large but consistent with the values predicted 

from the radiosonde data (Fig. 3) for such a large height difference. Both correction models reduce significantly the bias, 

although v1 has some residual bias, ∆1= −2.35  kg m-2, whereas v2 achieves ∆2= −0.50  kg m-2, i.e. almost perfect 280 
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correction. Figure 7 also compares the slope and offset results estimated by two different regression methods: Figs. 7a, b, and 

c used the OLS method, i.e. assuming no errors in the x variable, and Figs. 7d, e, and f used the York et al., 2004, method. 

With the latter method, the formal errors provided by the GPS data processing software were used as “obsevation errors”, after 

a rescaling by factor of 5 to be consistent with the traditionnally assumed uncertainty of 1.5 kg m-2 for GPS IWV data (Bock 

et al., 2021). The initial slope and offset amount to 𝛼0 = 0.92 and 𝛽0 = −4.63 kg m-2 with the OLS estimator, and 𝛼0 = 0.97 285 

and 𝛽0 = −6.34 kg m-2 with the York estimator. The latter values are more in line with the values found from the radiosonde 

data (Fig. 3) and predict a higher slope. It is well known that the OLS slope estimator is biased low (towards zero) when the 

x-variable contains random errors (Edland, 1996). This feature is clearly observed with all three data versions shown in Fig. 7. 

The results also verify the relationship between bias, slope, and offset sketched in Fig. B1, whatever the estimator. After 

correction with model v1, the slope becomes 𝛼1 = 1.08 with the OLS estimator and 1.15 with the York estimator, while 290 

correction with model v2 achieves 𝛼2 = 0.95 with the OLS estimator and 1.01 with the York estimator. Both estimators find 

that model v1 over-corrects slightly the data (𝛼1 > 1). On the other hand, v2 performs much better, and achieves almost a 

perfect slope (𝛼1 ≈ 1) with the York estimator. Regarding the offset, we see that the value is unchanged with model v1, as 

predicted from (B7), whereas model v2 achieves nearly perfect correction (𝛽2 ≈ 0). These results are highly consistent with 

those found in Section 3 from the radiosonde data. Regarding the initial question, we can state the IWV measurements from 295 

stations HOUE and ABMF are fairly consistent after the vertical correction. The residual bias and offset after correction are 

fairly within the error bars of the technique (Bock et al., 2013; Ning et al. 2016). 

Figure 8 presents the results for 105 inter-comparisons made of pairs of stations from the set of 15 stations of this 

network ordered by positive height differences, ∆ℎ > 0. The plots compare the bias, offset and slope for the uncorrected (v0) 

and the corrected (v1 or v2) data. Only the results from the York estimator are shown here. As expected, the uncorrected results 300 

show a general tendency towards larger negative biases, decreasing slope and larger negative offset when ∆ℎ is increased. 

There are, however, some exceptions, namely the comparisons involving station CBE0 (altitude of 374 m), for which the biases 

and offsets are slightly less negative, and the slopes are slightly farther from one, than observed with the other stations, 

especially compared to station HOUE which is located higher (418 m) and should thus have more pronounced effects. After 

correction with model v1, the biases and slopes are globally improved for all comparisons, while the offsets are unchanged, as 305 

expected with this model. The mean bias is reduced from −1.67 kg m-2 to −0.24 kg m-2 but some bias remains in the higher 

altitude inter-comparisons involving HOUE (Fig. 8a). In contrast, model v2 achieves a better bias correction for HOUE (Fig. 

8d). The results with model v2 also confirm the bias in the CBE0, which was already suspected from the uncorrected data. The 

problem with station CBE0 is further confirmed by the slope analysis, with model v2 indicating 𝛼2  < 1 for these inter-

comparisons (Fig. 8e), and large positive offsets (Fig. 8f). The correction with model v1 is not able to lead to these conclusions 310 

because the slopes are globally over-corrected for many stations (Fig. 8b) and the offsets are unchanged (Fig. 8c). Figures 8e 

and f also detect scale errors and anomalous offsets for a number of other inter-comparisons, namely when ∆ℎ is close to zero.  

Figure 9 provides further insight into the consistency between stations, with significance tests computed according to 

the t-statistics given in Appendix C. It is evident that CBE0 has an anomalous positive IWV bias about 2 kg m-2 compared to 
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all other stations (Fig. 9a, red curve, well above the other curves), a slope too low (Fig. 9b, red curve below the other curves), 315 

and a too large offset (Fig. 9c). Figures 9b and 9c reveal a second outlying station, BOUL, with a too high slope (Fig. 9b, light 

blue curve, about 0.12 above the other stations) and a too low offset (Fig. 9c). These anomalies could neither be detected from 

the uncorrected data, nor from the data corrected with model v1. Further investigation is needed to understand the issues in the 

IWV estimates for these two stations. Table 2 reports the median and the smallest absolute values for each station. Apart from 

stations CBE0 and BOUL, all other stations have median biases smaller than ± 0.53 kg m-2, median slopes in the range 0.97-320 

1.02, and median offsets smaller than ± 0.77 kg m-2. These numbers demonstrate a very good consistency between IWV 

measurements retrieved from the different GPS stations of this network. The dispersion of results is believed to be due to 

station-dependent errors. The smallest absolute values quantify the best agreement between nearby GPS stations, which is < 

0.1 kg m-2 between all stations, except CBE0 which has a large bias, and BOUL which has a slope significantly different from 

1.0. 325 

4.2 GPS vs. MWR satellite inter-validation 

GPS and MWR measurements of IWV are often used together for the inter-validation of the two techniques (Bock et al., 2007; 

Mears et al., 2015; Wentz, 2015; Ho et al., 2018). Microwave radiometer measurements are adversely affected by rain whereas 

GPS measurements are not. On the other hand, the GPS IWV estimates have uncertainties linked with data processing models 

and conversion from propagation delay to IWV (Bock et al., 2013; Ning et al., 2016; Bock et al., 2021). The intercomparison 330 

of both types of measurements is thus instructive for detecting and quantifying their mutual uncertainties. 

Microwave radiometer measurements are traditionally made over the world’s oceans where they achieve their highest 

accuracy. The intercomparison with GPS measurements is thus possible only for coastal stations and stations located on small 

islands. Although the MWR data are missing over land and over island’s footprint, due to “land contamination”, the high 

resolution (0.25°x0.25°) of the RSS v7.0 data set used here (Mears et al., 2015) allows to get enough valid measurements for 335 

comparison with the GPS stations on the Guadeloupe islands discussed in Sect. 4.1. Table 3 shows the mean distance between 

the GPS stations and the nearest MWR satellite grid-points within the 7 x 7 pixels surrounding each station. On average over 

all stations, the mean distance is 33.6 km for AMSR2, 82.3 km for F18, 26.9 km for GMI, and 37.6 km for Windsat. The 

difference in distance is due to the difference of footprints of the satellite instruments, F18 having the largest footprint (69 km 

x 43 km), and GMI the smallest (18 km x 11 km). For the intercomparison, MWR IWV data from the 7 x 7 pixels are 340 

interpolated to the location of the GPS sites by a Delaunay triangulation method (Press et al., 2007) and corrected vertically 

using the same method as for the GPS – GPS comparison discussed in Section 4.1. The height difference is here equal to the 

height of the GPS station, since the MWR data are valid on the mean sea level. The bias, slope, and offset parameters are 

derived as in the GPS – GPS comparison. The regression with the York et al., 2004, method, needs to specify correctly the 

uncertainties of the measurements from the two data sets, or at least to represent correctly the ratio of their mean uncertainties 345 

(see Appendix C). As mentioned above, the formal error rescaled by a factor of 5 is used for GPS. For MWR, we surmise that 

the horizontal interpolation from the gridded data will introduce some representativeness difference with the GPS point 
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measurements that we should take into account. We first computed the standard deviation of all valid IWV values from the 7 

x 7 pixels. It amounted to ~ 2.2 kg m-2 on average over all sites and satellites. This values seemed too high to be used directly 

as a measure of uncertainty of the MWR data. However, the variations over time of the standard deviation are thought to 350 

correctly reflect the changes in the local atmospheric state, weather conditions, and measurement noise. In a second step, we 

made a three-way error analysis between GPS, MWR, and ERA5 IWV data, following O’Carroll et al., 2008. This was done 

with the GPS station BCON, on Barbados island (Bock et al., 2021). For this station, the number of valid MWR pixels was 

higher than at all other sites of Caribbean GPS network, with an average of 46 valid pixels out of 49. This comparison is thus 

believed to provide a good estimate of the precision of the MWR data with negligible representativeness errors. We found the 355 

following standard error estimates for the three data sets: 𝜎𝐺𝑃𝑆 = 1.06 kg m-2; 𝜎𝑀𝑊𝑅 = 0.67 kg m-2; 𝜎𝐸𝑅𝐴5 = 1.82 kg m-2, for 

AMSR2. Nearly similar values were found for the other satellites. According to these numbers, the GPS IWV data are slightly 

noisier than the MWR data, which seems plausible, although the MWR and ERA5 standard errors might be slightly 

underestimated given that MWR radiances are assimilated into ERA5, i.e. errors are correlated. Finally, we rescaled the GPS 

formal errors and the MWR standard deviations to match these three-way error values, on average, for each satellite. The 360 

resulting “measurements errors” were then used in the York fit.  

Figure 10 shows the results of the GPS – MWR comparisons, where the bias, slope, and offset parameters were 

retrieved for the whole year 2020. The number of collocations here is much smaller than for the GPS – GPS comparisons 

(between 200 and 400 for the GPS – MWR comparisons compared to more than 4000 for the GPS – MWR comparisons over 

the full year). The median GPS – GPS results, determined as in Sect. 4.1, are superposed to emphasize the high correlation 365 

with the GPS – MWR intercomparisons (the Pearson correlation coefficients reported in each plot). Regarding, the biases, 

especially, the variations from station to station are about ± 0.5 kg m-2 (if we except CBE0) from both intercomparisons. They 

are thought to be GPS station-specific errors (due to, e.g., multipath and/or field of view limitations). The large bias in CBE0 

is confirmed with the MWR validation but station BOUL appears not to be an outlier here (for this station, the slope and offset 

estimates computed over the full year are closer to normal values). All three versions of the comparisons also reveal a 370 

systematic mean bias between GPS and MWR IWV data of about 0.7 kg m-2 (0.67 kg m-2 with respect to AMSR2), with GPS 

being drier than MWR. A similar mean bias was previously observed by Mears et al., 2015, on global long-term averages 

including more GPS sites and satellites. Whether this bias is imbedded in the GPS or MWR retrievals is not clear at the 

moment. The mean difference between the different satellite estimates is, comparatively, slightly smaller: AMSR2 and Windsat 

agree almost perfectly, while GMI has a slight moist bias of +0.2 kg m-2 compared to either AMSR2 or Windsat, and F18 has 375 

a slight dry bias of –0.4 kg m-2 compared to the AMSR2. The slope estimates show more scatter between sites and satellites, 

although the mean GPS – MWR values agrees very well with the GPS – GPS values. Similar to the findings of Sect. 4.1, the 

classical correction (v1) does not preserve the slopes and leads to large overestimations for the stations are higher altitudes. 

Again, the new correction (v2) achieves almost perfect slopes, both for the GPS – GPS and the GPS – MWR comparisons.  

Following the IWV inter-comparisons, statistical tests (Appendix C) were applied to sort those comparisons which 380 

show biases and offsets significantly different from zero and slopes significantly different from one. Test results with p-values 
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< 0.01 are highlighted in Fig. 10 for all comparisons. It can be noted that most biases are significant, but not all slopes and 

offsets. Indeed, the standard errors for the latter parameters remain relatively high, despite one full year of data was used here. 

For example, several slopes of the GPS – F18 comparisons deviate notably from one, but are not significant (mean standard 

error of 0.0193), while they are significant for the GPS – GPS intercomparison (mean standard error of 0.0029). These results 385 

indicate that not only accurate vertical correction (model v2) and correct specification of the measurement errors are crucial 

to diagnose biases and scaling errors but also the sample size. 

5. Discussion and conclusions 

In this paper we have shown that the model traditionally used for the correction of the IWV difference due to the 

vertical displacement between observation sites has two shortcomings. First, it induces a bias in the slope estimate and, 390 

correlatively, in the offset estimate, with slopes being over-estimated when the IWV measurements from the lower site are 

corrected (see, e.g., Fig. 10e). Second, it does not change the offset estimate, which remains generally close to the uncorrected 

bias value (Figs. 10a, c, and f). We have proposed an improved correction model (Eq. (B8)) based on two terms, 𝑓𝑐 and 𝑔𝑐, 

which overcomes these limitations. This model relies on a multi-linear regression of slope and offset (Eq. (B9)) as a function 

of the height difference (Eqs. (5, 6)). We have shown that high-resolution radiosonde data are capable of providing accurate 395 

estimates of the parameters (𝑎𝑖 , 𝑏𝑖) of this model on a monthly basis. The correction model reduces the bias, slope, and offset 

to negligible mean errors (bias < ± 0.02, slope – 1 < ± 0.004, offset < ± 0.1) for height differences up 500 m, with a standard 

deviation smaller than 0.5 kg m-2. The errors are expected to increase slightly for larger height differences (e.g. we found bias 

< ± 0.08, slope – 1 < ± 0.025, offset < ± 0.5, for a height difference of 1000 m with the data from radiosonde station 78897). 

The method has been successfully applied to the correction of GPS IWV data from a network of stations in a tropical 400 

mountainous area, with altitudes ranging from the sea level up to more than 400 m. Corrected data allowed to diagnose 

anomalous biases and scaling errors at two sites, which could not be detected in the raw measurements or when the traditional 

correction method was applied. The method was also applied to inter-validation of IWV from satellite MWR measurements 

and GPS measurements in the same region. The corrected data confirmed the significant bias and anomalous slope for one of 

the GPS stations (CBE0, bias close to 2 kg m-2, and slope close to 0.98). The reason why the second station (BOUL) did not 405 

show up in this comparison is that the errors decreased over time, possibly linked with several equipment changes that were 

reported during 2020 at this site. Some dispersion was also observed between the four satellite data that were compared, with 

F18 showing more scatter as well as a smaller number of available collocations. We suspect that the larger footprint of the 

MWR instrument on board this satellite induced larger representativeness differences, since pixels located farther from the 

GPS stations have been used. F18 might also have slightly more land contamination than the other satellites do. However, 410 

when the results from the four satellites were averaged together, they were in very good agreement with the GPS-only results. 

 This study also emphasized the need for using a regression method that accounts for errors in both variables and for 

correctly specifying these errors. Not doing so is known from least-squares theory to result in biased slope and offset estimates, 

https://doi.org/10.5194/amt-2022-40
Preprint. Discussion started: 21 April 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

as well as biased standard errors and inconsistencies in subsequent significance tests. These issues were discussed in Appendix 

C, with Monte Carlo simulations, and illustrated in Sect. 4.1, for the case of the GPS – GPS intercomparison.  It was namely 415 

shown that the regression method of York et al., 2004, works well as soon as the ratio of the uncertainties in both variables is 

properly specified. Stated differently, it appears not necessary to provide absolute uncertainties but only relative ones. This is 

fortunate as the former are usually not known, unless an absolute calibration technique is involved. In this study, we have 

successfully used a triple collocation method to estimate the relative errors in the GPS and MWR data, using ERA5 as the 3rd 

data set. This approach provides generally satisfying results as long as the representativeness errors in all data sets are small, 420 

or at least similar (Stoffelen, 1998; O’Carroll et al., 2008). In our case, the MWR and ERA5 have similar spatial resolutions 

which may induce representativeness errors of similar magnitude compared to the GPS observations which are of more local 

nature. We also attempted to combine GPS, satellite MWR, and radiosonde observations but the triple collocation failed in 

this case. However, the combination of collocated GPS, radiosonde, and ground-based MWR measurements from the Barbados 

Cloud Observatory during the EUREC4A campaign worked well. In this case, we found the following error estimates: 𝜎𝐺𝑃𝑆 = 425 

0.93 kg m-2, 𝜎𝑅𝑆 = 0.65 kg m-2, and 𝜎𝑀𝑊𝑅 = 1.53 kg m-2. This new estimate for the GPS errors is fairly consistent with the one 

found with the satellite MWR and ERA5 data reported in Sect 4.2. It is also consistent with the estimate reported by Cimini et 

al., 2012, of 0.94 kg m-2. The other two errors seem plausible as well, especially the higher value for the ground-based MWR 

data which were shown to contain excessive noise during the first weeks of the campaign (Bock et al., 2021). 

 The improved vertical correction method described in this paper can be easily applied to any other region for which 430 

high resolution vertical profiles of water vapour are available. Such profiles can be provided by radiosonde observations but 

also by numerical weather model outputs or by reanalyses. In this study, the model parameters have been derived on a monthly 

basis, which seems well adapted to correct data sets which cover at least one month of measurements. We also tested separate 

model adjustments and corrections for the 00UTC and 12UTC profiles, but the results we not significantly different. In the 

future, we plan to derive the model parameters on a global grid from the ERA5 reanalysis which provides a stable and accurate 435 

climatology of the water vapour distribution. The global correction grid will be useful to provide more accurate inter-

comparisons and inter-validations of global IWV data sets from various techniques. 

Data availability.  

The high-resolution radiosonde data used in this work were retrieved from the University of Wyoming web site 

(http://weather.uwyo.edu/upperair/bufrraob.shtml, last access: January 2022). The GPS IWV data are available from AERIS, the French 440 
national data and service portal for the atmosphere (https://www.aeris-data.fr/, last access: January 2022), under DOI 

https://doi.org/10.25326/79 (Bock, 2020). The satellite MWR data are freely available via ftp from https://www.remss.com/missions/ after 

registration. 

Appendix A: Correction model based on an exponential profile  

The distribution of water vapour in the atmosphere is generally highly variable, but may be approximated by the equation: 445 
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𝜌𝑣(ℎ) = 𝜌0𝑒𝑥𝑝(−𝛾ℎ) ,           (A1) 

where 𝛾 > 0 is the mean vertical decay rate of water vapour, also sometimes expressed as the inverse of the water vapour scale 

height, 𝐻𝑣 = 1/𝛾, 𝜌0 is the ground-level water-vapour density, and ℎ is the geometric height. Standard values for 𝐻𝑣 and 𝜌0 

are 𝐻𝑣= 2 km and 𝜌0 = 7.5 g m-3, or alternatively 𝛾 = 5 ∙ 10−4 m-1 (ITU, 2017). 

It follows from Eq. (A1) that the IWV above a height ℎ𝐴 is simply: 450 

𝐼𝑊𝑉(ℎ𝐴) = ∫ 𝜌𝑣(ℎ)𝑑ℎ =
∞

ℎ𝐴

𝜌0

𝛾
𝑒𝑥𝑝(−𝛾ℎ𝐴) ,         (A2) 

The IWV in the layer in between two stations, A and B, at heights, ℎ𝐴 and ℎ𝐵, writes: 

∆𝐼𝑊𝑉 = ∫ 𝜌𝑣(ℎ)𝑑ℎ =
ℎ𝐵
ℎ𝐴

𝜌0

𝛾
[exp(−𝛾ℎ𝐴) − exp(−𝛾ℎ𝐵)],       (A3) 

Equation (A3) can be used to correct the IWV measurements from station A to conform to the height of station B, in an additive 

way: 𝐼𝑊𝑉𝐴,𝑐 = 𝐼𝑊𝑉𝐴 − ∆𝐼𝑊𝑉, where 𝐼𝑊𝑉𝐴 = 𝐼𝑊𝑉(ℎ𝐴). Combining Eqs. (A2) and (A3) shows that the correction is actually 455 

multiplicative in nature:  

𝐼𝑊𝑉𝐴,𝑐 = 𝐼𝑊𝑉𝐴 × exp(−𝛾(ℎ𝐵 − ℎ𝐴)) ,         (A4) 

Here we can define 𝑓𝑐(∆ℎ) as the correction factor which, applied to 𝐼𝑊𝑉𝐴, conforms to the height ℎ𝐵: 

𝑓𝑐(∆ℎ) = exp(−𝛾∆ℎ)           (A5) 

where ∆ℎ=ℎ𝐵 − ℎ𝐴, is the height difference between station A and station B. 460 

When |∆ℎ| is small, or more rigorously when |𝛾∆ℎ| ≪ 1, Eq. (A5) can be approximated by 𝑓𝑐(∆ℎ) ≈ 1 − 𝛾∆ℎ, 

which leads to a widely-used form of the IWV correction (Bock et al., 2005; Morland et al., 2006a, b; Buehler et al., 2012): 

𝐼𝑊𝑉𝐴,𝑐 ≈ 𝐼𝑊𝑉𝐴 − 𝛾 ∙ ∆ℎ ∙ 𝐼𝑊𝑉𝐴.           (A6) 

Equation (A6) has traditionally been used to estimate 𝛾 from the IWV observations at different heights, e.g. for two stations 

at heights ℎ𝐴 and ℎ𝐵: 465 

𝛾 ≈
(𝐼𝑊𝑉𝐴−𝐼𝑊𝑉𝐵)

∆ℎ∙𝐼𝑊𝑉𝐴
            (A7) 

which expresses the idea that 𝛾 represents the fractional IWV variation over a height ∆ℎ (Bock et al., 2005). The range of 

validity for the approximate formulations expressed by Eqs. (A6) and (A7) to hold can be estimated from the condition |𝛾∆ℎ| <

0.1, which leads to |∆ℎ| < 200 m, if we use 𝐻𝑣 =
1

𝛾
= 2 km. For larger height differences, it is recommended to use the exact 

formulations (A4) and (A8): 470 

𝛾 = −
1

∆ℎ
log (

𝐼𝑊𝑉𝐵

𝐼𝑊𝑉𝐴
)           (A8) 
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Appendix B: Link between bias, slope, and offset parameters 

Let us assume that we have 𝑛 observations, (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1. . 𝑛, corresponding to paired measurements of the same physical 

quantity coming from the same instrument at two different sites or from two different instruments at the same site. The 

difference in the observation conditions is assumed to lead a bias,∆, and a scaling error that can be represented by a linear fit 475 

slope, 𝛼, and offset, 𝛽, defined as: 

∆= 𝜇𝑦 − 𝜇𝑥 ,            (B1) 

where 𝜇𝑥 and 𝜇𝑦 are the sample means of 𝑥 and 𝑦, and the slope and offset parameters are derived from the linear regression 

model: 

𝑦 = 𝛼𝑥 + 𝛽,            (B2) 480 

Thanks to the linearity of the mean operator, the (B2) relationship is also verified for the means: 

𝜇𝑦 = 𝛼𝜇𝑥 + 𝛽 ,            (B3) 

Note that since {𝑥𝑖} and {𝑦𝑖} are both obtained from measurements, they are usually both subject to errors. There exist robust 

methods to estimate optimally 𝛼  and 𝛽  in the presence of errors in both variables (e.g. Mandel, 1984; Macdonald and 

Thompson, 1992; York et al., 2004). Note also that, depending on which of 𝑥 and 𝑦 is considered as the reference, the opposite 485 

relationship may sometimes be used, 𝑥 = 𝛼′𝑦 + 𝛽′, which relates to (B2) by  

𝛼′ = 1/𝛼,             (B4a)  

𝛽′ = −𝛽/𝛼.            (B4b) 

Equations (B1) and (B3) recall that the parameters ∆, 𝛼, and 𝛽 are inter-related through 𝜇𝑥 and 𝜇𝑦. It is instructive to 

discuss the different cases of interest for the interpretation of experimental results. These cases are described below and 490 

illustrated in Fig. B1: 

 Case n°1: 𝛼 = 1. In this case, the two observation series have only a bias and no scaling error, and it follows from 

Eqs. (B1) and (B3) that 𝜇𝑦 = 𝜇𝑥 + 𝛽 and 𝛽 = ∆.  

 Case n°2: 𝛼 > 1. In this case, the two series have a scaling error, where the range of 𝑦𝑖values is larger than the range 

of 𝑥𝑖values. It also follows from Eqs. (B1) and (B3) that 𝛽 < ∆. Depending on the sign of ∆ there is an additional 495 

constraint or not on 𝛽, namely:  

(a) if ∆> 0, then 𝛽 can be either positive or negative, with 𝛽 < ∆. 

(b) if ∆< 0, then 𝛽 can be only negative, i.e., 𝛽 < ∆< 0. 

 Case n°3: 𝛼 < 1. In this case, the two series have a scaling error, where the range of 𝑦𝑖values is smaller than the 

range of 𝑥𝑖values, and it follows from Eqs. (B1) and (B3) that 𝛽 > ∆. Again, there may be an additional constraint 500 

on 𝛽: 
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(a) if ∆> 0, then 𝛽 can be only positive: 𝛽 > ∆> 0. 

(b) if ∆< 0, then 𝛽 can be either positive or negative, with 𝛽 > ∆. 

 

Let us now analyse the impact of applying a rescaling of the reference series, {𝑥𝑖}, in order to correct it for difference 505 

in the observation conditions with respect to the tested series {𝑦𝑖}. We denote the corrected series by {𝑥𝑖,𝑐}, with 𝑥𝑖,𝑐 = 𝑓𝑐 × 𝑥𝑖. 

In the case of IWV vertical correction, the scaling factor 𝑓𝑐 could be computed from Eq. (A5) under the hypothesis of a vertical 

distribution of water vapour following an exponential law. The bias, slope, and offset parameters, after correction, are denoted 

respectively as ∆𝑐, 𝛼𝑐, and 𝛽𝑐, and write: 

∆𝑐= 𝜇𝑦 − 𝑓𝑐𝜇𝑥 ,            (B5) 510 

𝛼𝑐 =
𝛼

𝑓𝑐
 ,             (B6) 

𝛽𝑐 = 𝛽,             (B7) 

Equations (B5) and (B6) follow from the fact that 𝜇𝑦 = 𝛼𝜇𝑥 + 𝛽 = 𝛼𝑐𝑓𝑐𝜇𝑥 + 𝛽𝑐 must hold for every 𝜇𝑥. A crucial question is 

to check if this correction method can achieve a perfect bias correction and scaling simultaneously, i.e. ∆𝑐= 0 and 𝛼𝑐 = 1.  

Let us first check the conditions for achieving a zero bias, ∆𝑐= 0. This result is achieved if and only if 𝑓𝑐 = 𝜇𝑦 𝜇𝑥⁄ . 515 

From this condition, it follows that 𝛼𝑐 = 𝛼
∆−𝛽

∆𝛼−𝛽
. The only possibility to simultaneously achieve ∆𝑐= 0 and 𝛼𝑐 = 1 is actually 

that 𝛼 = 1, i.e. when the data have initially only a bias but no scaling error. In all other cases, the final slope will be different 

from one, and it can be either larger or smaller than the initial slope, i.e. in some cases, the slope can be degraded (getting 

farther from one). These situations depend again on the initial values of 𝛼 and ∆: 

 case n°1: if ∆> 0, then 𝛼𝑐 < 𝛼. If, in addition, 𝛼 < 1 then 𝛼𝑐 < 𝛼 < 1, i.e. the slope is degraded. If, instead, 𝛼 > 1, 520 

then 𝛼𝑐 < 𝛼 can lead to an improvement in the slope but there is no guarantee that 𝛼𝑐 will be close to one. 

 case n°2: if ∆< 0, then 𝛼𝑐 > 𝛼. If, in addition, 𝛼 > 1 then 𝛼𝑐 > 𝛼 > 1, i.e. the slope is degraded. If, instead, 𝛼 < 1, 

then 𝛼𝑐 > 𝛼 can lead to an improvement in the slope but there is no guarantee that 𝛼𝑐 will be close to one. 

The above analysis shows that, except when 𝛼 = 1, the final slope will be different from one, and in some cases, depending 

on the sign of the initial bias, it will be degraded. 525 

Let us now check the conditions for achieving a unity slope, 𝛼𝑐 = 1. This result is achieved if and only if 𝑓𝑐 = 𝛼. 

From there it results that ∆𝑐= 𝛽, i.e. the sign and magnitude of the final bias will depend on the sign and magnitude of the 

initial offset. Unless 𝛽 = 0, the final bias will generally be different from zero, i.e., it is in general not possible to achieve a 

zero bias if the reference data are corrected by a simple scaling factor that would achieve a final slope of one. 
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Instead of a simple rescaling correction model, we propose to use a linear correction model which includes both a 530 

scaling factor, 𝑓𝑐, and an intercept, 𝑔𝑐: 

 𝑥𝑖,𝑐 = 𝑓𝑐 × 𝑥𝑖 + 𝑔𝑐           (B8) 

For our application to IWV vertical correction, both 𝑓𝑐 and 𝑔𝑐 would depend on the height difference, ∆ℎ. Following the same 

reasoning as for the simple scaling model, it is straightforward to show that the condition to achieve both a zero bias, ∆𝑐= 0, 

and an unity slope, 𝛼𝑐 = 1, after correction writes: 535 

𝑓𝑐 = 𝛼 and 𝑔𝑐 = 𝛽           (B9) 

Indeed, substituting (B9) into (B8), and expressing the bias ∆𝑐= 𝜇𝑦 − 𝜇𝑥,𝑐, and the linear fit equation 𝜇𝑦 = 𝛼𝑐𝜇𝑥,𝑐 + 𝛽𝑐, after 

correction, we find ∆𝑐= 0, 𝛼𝑐 = 1, and 𝛽𝑐 = 0, which is the desired result. 

Appendix C: Statistical properties of the bias and straight line fitted parameters 

The classical straight line fitting problem can be formalized as follows. Let us assume the linear model 540 

𝑌 = 𝛼𝑥 + 𝛽 + 𝜀𝑌,           (C1) 

where 𝑌 is the response variable, 𝑥 the independent variable, 𝛼 and 𝛽 the slope and intercept, and 𝜀𝑌 a random variable of zero 

mean and variance 𝜎𝜀,𝑌
2 , representing the error in 𝑌. When 𝑥 is known without error, the ordinary least squares (OLS) solution 

is found by minimizing the sum of squared errors, 𝑆𝑆𝐸 = ∑ 𝑒𝑖
2𝑛

𝑖=1 , where 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 and �̂�𝑖 = �̂�𝑥𝑖 + �̂� is the predicted value 

from the fitted line. In this case, the errors represent the vertical distance of the best fit line to the data points. The OLS solution 545 

for 𝛼 and 𝛽 has a simple analytical formulation (Walpole, 2012): 

𝛼𝑂𝐿𝑆 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)
𝑛
𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

,           (C2a) 

𝛽𝑂𝐿𝑆 = �̅� − 𝛼𝑂𝐿𝑆�̅�.           (C2b) 

The variance of the OLS estimators is given by (Walpole, 2012): 

𝜎𝛼,𝑂𝐿𝑆
2 =

1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

𝜎𝜀,𝑌
2 ,           (C3a) 550 

𝜎𝛽,𝑂𝐿𝑆
2 =

∑ 𝑥𝑖
2𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

𝜎𝜀,𝑌
2 .           (C3b) 

An unbiased estimate of 𝜎𝜀,𝑌
2  is given by (Walpole, 2012): 

𝑠𝜀,𝑌
2 =

𝑆𝑆𝐸

𝑛−2
= ∑

(𝑦𝑖−�̂�𝑖)
2

𝑛−2

𝑛
𝑖=1            (C4) 
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From there, it is customary to compute the standard errors of the estimates as:   

𝑠𝑒𝛼,𝑂𝐿𝑆
2 =

1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

𝑠𝜀,𝑌
2 ,           (C5a) 555 

𝑠𝑒𝛽,𝑂𝐿𝑆
2 =

∑ 𝑥𝑖
2𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

𝑠𝜀,𝑌
2 .           (C5b) 

Assuming that the errors 𝜀𝑌,𝑖  are normally distributed, it follows that the estimators 𝛼𝑂𝐿𝑆  and 𝛽𝑂𝐿𝑆  are also normally 

distributed, and that (𝑛 − 2)𝑠𝜀,𝑌
2 /𝜎𝜀,𝑌

2  is a chi-squared variable with 𝑛 − 2 degrees of freedom. Hypothesis testing of the fitted 

parameters is then done using the following statistics: 

𝑡𝛼,𝑂𝐿𝑆 =
𝛼𝑂𝐿𝑆−𝛼0

𝑠𝑒𝛼,𝑂𝐿𝑆
            (C6a) 560 

𝑡𝛽,𝑂𝐿𝑆 =
𝛽𝑂𝐿𝑆−𝛽0

𝑠𝑒𝛽,𝑂𝐿𝑆
            (C6b) 

which both have t-distributions with 𝑛 − 2 degrees of freedom. In (C6a) and (C6b), 𝛼0 and 𝛽0 are the values assumed in the 

null hypotheses. Typically, one wants to test H0: 𝛼𝑂𝐿𝑆 = 1 against H1: 𝛼𝑂𝐿𝑆 ≠ 1, and H0: 𝛽𝑂𝐿𝑆 = 0 against H1: 𝛽𝑂𝐿𝑆 ≠ 0. The 

associated p-values are then computed from the t-cumulative distribution function (CDF): 

𝑝𝛼,𝑂𝐿𝑆 = 2 ∙ 𝑡𝑐𝑑𝑓(−|𝑡𝛼,𝑂𝐿𝑆|, 𝑛 − 2)          (C7a) 565 

𝑝𝛽,𝑂𝐿𝑆 = 2 ∙ 𝑡𝑐𝑑𝑓(−|𝑡𝛽,𝑂𝐿𝑆|, 𝑛 − 2)          (C7b) 

When 𝑥 is observed with error, a second observing equation applies: 

𝑋 = 𝑥 + 𝜀𝑋,            (C8) 

where the observed quantity 𝑋 of the unknown variable 𝑥, now contains a random error 𝜀𝑋, and the OLS solution (C2) is no 

longer optimal. Indeed, the slope estimate will typically have negative bias (see Draper and Smith, 1998, Eq. (3.4.10) for an 570 

expression of the bias) and this will bias the intercept estimate in return. 

The solution of the regression of 𝑌 on 𝑋 with errors in both variables, can be found by minimizing the sum of squared 

errors in both variables: 𝑆𝑆𝐸 = ∑ [𝑤(𝑥𝑖)(𝑥𝑖 − �̂�𝑖)
2 + 𝑤(𝑦𝑖)(𝑦𝑖 − �̂�𝑖)

2]𝑛
𝑖=1  where 𝑤(𝑥𝑖)  and 𝑤(𝑦𝑖)  are the weights of the 

observations, and �̂�𝑖 and �̂�𝑖 are the predicted values. Weights have been included here to follow the formalism of York et al., 

2004. They would typically be computed from the assumed uncertainties, 𝑢, in the measurements, e.g. 𝑤(𝑥𝑖) = 1/𝑢𝑖,𝑥
2  and 575 

𝑤(𝑦𝑖) = 1/𝑢𝑖,𝑦
2 . Note that in the special case of unit weights, the solution is the straight line that minimizes the sum of the 

squares of the perpendicular distances to the observed points (Macdonald and Thompson, 1992). Finding the solution of this 

problem is not straightforward and many different, often approximate, solutions have been proposed in the literature (see e.g. 

the discussion in Press et al., 2007). In this work, we use the iterative algorithm approach proposed by York et al., 2004, which 

includes also equations for the standard errors of the fitted parameters. The equations are more complex than those of the OLS 580 
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solution and will not be repeated here. The standard errors of the York estimators can be likewise used with Eqs. (C6-7) for 

hypothesis testing. However, here we want to emphasize that the formulations of the standard errors given by York et al., 2004, 

need to be rescaled by the goodness of fit factor √𝑆𝑆𝐸/(𝑛 − 2), where 𝑆𝑆𝐸 is the residual sum of squares given above. This 

rescaling is important to retrieve realistic values of the standard errors and thus the test statistics and the subsequent p-values. 

If the uncertainties in the measurements have been properly specified, this quantity should be close to 1.  585 

In addition, it is useful to describe how the bias estimates can be tested. Especially, we want to test the null hypothesis: 

H0: ∆= 0 against H1: ∆≠ 0, where ∆ is computed as ∆= �̅� − �̅�. The difficulty here is with standard error of ∆ when both 

variables have errors. It can be shown that the mean and variance of the ∆ estimator are: 𝐸(∆) = (𝛼 − 1)�̅� + 𝛽 and 𝑉𝑎𝑟(∆) =

𝜎∆
2 =

𝜎𝜀,𝑋
2 +𝜎𝜀,𝑌

2

𝑛
, respectively. The problem here is that 𝜎𝜀,𝑋

2  and 𝜎𝜀,𝑌
2  are unknown. It may be conjectured that 𝑠𝛿

2 = ∑
(𝛿𝑖−�̅�)

2

𝑛−1

𝑛
𝑖=1  

is a proper estimator of the variance of 𝑌 − 𝑋, with 𝛿𝑖 = 𝑦𝑖 − 𝑥𝑖 and 𝛿̅ = �̅� − �̅�, and that 
𝑠𝛿
2

𝑛
 may be used as an estimator of 590 

𝜎∆
2. However, it can be shown that 𝐸(𝑠𝛿

2) = (1 − 𝛼)2∑
(𝑥𝑖−�̅�)

2

𝑛−1

𝑛
𝑖=1 + 𝜎𝜀,𝑋

2 + 𝜎𝜀,𝑌
2  and that the first term is typically dominant 

over the latter two, i.e. this estimator of 𝜎∆
2 is biased. Instead, we propose to use (C4) as an estimator of 𝜎𝜀,𝑌

2  and a similar 

estimator for 𝜎𝜀,𝑋
2 :  

𝑠𝜀,𝑋
2 = ∑

(𝑥𝑖−�̂�𝑖)
2

𝑛−2

𝑛
𝑖=1             (C9) 

where �̂�𝑖 =
𝑦𝑖−�̂�

�̂�
 is the predicted value for 𝑥𝑖. It can be shown that 𝐸(𝑠𝜀,𝑌

2 ) ≈ 𝛼2𝜎𝜀,𝑋
2 + 𝜎𝜀,𝑌

2  and 𝐸(𝑠𝜀,𝑋
2 ) ≈ 𝜎𝜀,𝑋

2 +
𝜎𝜀,𝑌
2

𝛼2
. Since in 595 

our applications, 𝛼 is usually close to one, and the two error variances are comparable, 𝜎𝜀,𝑋
2 ≈ 𝜎𝜀,𝑌

2 , both estimators will only 

depart slightly from 𝜎𝜀,𝑋
2 + 𝜎𝜀,𝑌

2 . In consequence, we propose to average the two estimates, and use  

𝑠∆
2 =

𝑠𝜀,𝑋
2 +𝑠𝜀,𝑌

2

2𝑛
             (C10) 

as an estimator of 𝜎∆
2 = 𝑉𝑎𝑟(∆). Note that the OLS and York estimators predict different values of 𝑠∆

2 because 𝑠𝜀,𝑋
2  and 𝑠𝜀,𝑌

2  

depend on the estimated values of 𝛼 and 𝛽. The test statistic and subsequent p-value for ∆ can be computed in a similar manner 600 

as for 𝛼 and 𝛽, although the statistic does not exactly follow a t-distribution in this case. 

The performance of the OLS and York regression methods have been evaluated based on Monte Carlo tests. The main 

goals were to evaluate: i) the impact of errors in x on the OLS estimator, ii) the impact of mis-specification of the errors in the 

two variables with the York estimator, iii) the performance of the test statistic for the bias. We simulated 𝑚 = 105 data sets, 

each composed of 𝑛 = 41pairs of observations, (𝑥𝑖,𝑦𝑖), 𝑖 = 1. . 𝑛, where 𝑥𝑖 = 10. .50 by step of 1 plus a random value from 605 

a normal distribution, 𝑁(0, 𝜎𝑋
2), and 𝑦𝑖 = 𝛼�̃�𝑖 + 𝛽 plus a random value from a normal distribution, 𝑁(0, 𝜎𝑌

2), where �̃�𝑖 is the 

true (noise-free) value of 𝑥𝑖. Table C1 presents the results for different cases where the true noise variances, 𝜎𝑋
2 and 𝜎𝑌

2, were 

changed, and the assumed variances, 𝑢𝑥
2 and 𝑢𝑦

2, were either correctly specified or not (note that the latter are used only in the 
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York fit). All these simulations were run with 𝛼 = 1and 𝛽 = 0. We also run simulations for other values of 𝛼and 𝛽, but the 

conclusions were unchanged, e.g., with 𝛼 = 0.8and 𝛽 = 5.0 we did not observe any significant difference in the results 610 

compared to those presented in Table C1. Note that the SE values for ∆ reported in Table C1 were computed with the York 

estimates of 𝛼 and 𝛽. We observed that they were consistent with the values computed with the OLS estimates to 0.01 or better 

(OLS values greater than York values) and consequently led to the same hypothesis test results on average.  

The performance of the estimators was assessed in terms of bias (difference between the mean estimate and the truth), 

variance (the consistency between the observed standard deviation, STD, and the mean standard error, SE), and the correctness 615 

of the 5% significance level (the value 𝑝0.05 reported in Table C1 is the fraction of simulations with p-values < 0.05). The 

results are summarized below: 

 𝜎𝑋
2 = 0, when no errors are simulated in x (case n°1), the OLS and York methods yield identical results 

(mean, STD, SE, 𝑝0.05) 

 𝜎𝑋
2 > 0, the OLS estimates of slope and offset are biased (𝛼𝑂𝐿𝑆 < 1 and 𝛽𝑂𝐿𝑆 > 0) and the magnitudes of the 620 

biases depend on the strength of the noise:  

o when 𝜎𝑋 = 1 (cases n°2, 3, 4, 6, 8), the biases are small:  𝛼𝑂𝐿𝑆 ≈ 0.993, 𝛽𝑂𝐿𝑆 ≈ 0.19, and 𝑝0.05 ≈

0.06, 

o when 𝜎𝑋 = 4 (cases n°5, 7), the biases are larger: 𝛼𝑂𝐿𝑆 ≈ 0.90, 𝛽𝑂𝐿𝑆 ≈ 2.9, and 𝑝0.05 ≈ 0.5, 

o when 𝜎𝑋 is proportional to X (cases n°9, 10), the biases take intermediate values: 𝛼𝑂𝐿𝑆 = 0.93 −625 

0.98, 𝛽𝑂𝐿𝑆 = 0.5 − 1.9, and 𝑝0.05 = 0.1 − 0.2, 

o when 𝜎𝑌 > 𝜎𝑋 (cases n°6, 8), the mean values are unchanged, but STD and SE increase, and 𝑝0.05 

is improved (compare, e.g., cases n°2 and 6). 

 𝜎𝑋
2 > 0, the York estimates are unbiased in all cases, except when the uncertainties are mis-specified and 

they are dissimilar in both variables: 630 

o when 
𝑢𝑋

𝑢𝑌
≠

𝜎𝑋

𝜎𝑌
  (cases n°3, 5, 6), the biases amount to 𝛼𝑌𝑜𝑟𝑘 − 1 = ±0.05, 𝛽𝑌𝑜𝑟𝑘 = ±1.5, 𝑝0.05 =

0.14 − 0.18 in cases n°5, 6, but they are much smaller in case n°3.  

o when 
𝑢𝑋

𝑢𝑌
=

𝜎𝑋

𝜎𝑌
 (cases n°7, 8), all the biases vanish, although the specified uncertainties are smaller 

than the true errors. 

 The standard errors are consistent with the standard deviations in all cases. They increase when the noise 635 

increases. Note that the standard errors are relatively large in these simulations because the samples contain 

only 𝑛 = 41 values. Increasing 𝑛 by a factor of 10 (consistent with the GPS – MWR comparisons of Sect. 

4.2), would decrease SE by a factor of 10. A reduction of the SE would also imply that some of the slope 

and offset biases become significant (e.g. in case n°3). 
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 The bias estimator, ∆= �̅� − �̅�, is “unbiased” in all cases (mean ≈ true value) and its SE estimator is consistent 640 

with the standard deviation (this confirms the validity of the SE estimator given by Eq. (C10)) with only a 

small bias when the noise variances are dissimilar (cases 5, 6: SE ≈ 0.62 compared to STD = 0.64) and 

subsequent impact on the 𝑝0.05 probabilities (𝑝0.05 = 0.13 - 0.18). 

Note that even when 𝜎𝑋
2 > 0 is constant, the OLS estimators and subsequent test statistics are biased. 

Figure C1 shows the distributions of the slope, offset and p-values from the hypothesis tests for cases n°5 and 7. The 645 

shapes of the distributions of the slope and offset resemble non-central t-distributions. Note the biases of the OLS estimators 

in both cases and the bias in the York estimators only in case n°5. The distributions of the p-values are expected to be flat 

(equal probability for all p-values), which is verified for the York fit in case n°7, and all other simulated cases, except for cases 

n°5 and 6, and to a lesser extent case n°3, when the error ratios are mis-specified. In case n°5 shown in the figure, it is seen 

that the small p-values have larger probability, which indicates that an excessive number of slope and offset estimates are 650 

biased. This happens more often with the OLS estimator. 
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Table 1: Height above sea level and number of IWV estimates (N) for 15 GNSS stations over the Guadeloupe islands (62°W-775 

61°W, 15.75°N-16.75°N), for the period from 1 January to 29 February 2020 (Bock et al. 2021). 

 PPTG LDIS DEHA DESI MAGT BOUL ABMF ABD0 ABER GOSI FFE0 MAGA FNA0 CBE0 HOUE 

Height 

(m) 
1 4 5 11 13 14 15 20 25 49 53 62 122 374 418 

N 1281 1439 1423 1208 1439 1199 1438 1380 1209 1165 1439 1191 474 752 1429 
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Table 2: Median values and smallest absolute values for the bias, slope (or slope – 1), and offset of GNSS IWV inter-780 

comparisons after correction for the height difference using the proposed model (v2). Data cover the period from 1 January to 

29 February 2020. Slope and offset are estimated with the York et al. 2004, method. Bias and offset values significantly 

different from 0, and slope values significantly different from 1, are highlighted depending on their p-value (* ≤ 0.05, ** ≤ 

0.01). Two anomalous stations (BOUL and CBE0) with large bias and offset values, and slope deviating from one, are 

highlighted in bold.  785 

 

 PPTG LDIS DEHA DESI MAGT BOUL ABMF ABD0 ABER GOSI FFE0 MAGA FNA0 CBE0 HOUE 

Median value 

Bias 

(kg m-2) 
-0.21** -0.41** 0.51** -0.53** 0.03 -0.04 0.29** -0.42** -0.12 0.21** 0.50** 0.11 0.05 2.01** -0.31** 

Slope 1.011* 0.965** 1.021* 0.970* 0.993 1.120** 1.011 0.984 0.999* 0.997 1.012 1.020 0.983 0.940** 1.008 

Offset 

(kg m-2) 
-0.57 0.70 -0.10 0.46 0.05 -4.09** -0.16 -0.10 -0.10 0.18 0.10 -0.77 0.64 3.73** -0.48 

Smallest absolute value 

Bias 

(kg m-2) 

0.05 0.02 0.01 0.08 0.01 0.01 0.04 0.02 0.09 0.04 0.01 0.09** 0.07 1.56** 0.05 

Slope – 1 0.001 0.004* 0.002 0.004* 0.002 0.065** 0.003 0.002 0.006* 0.000 0.001 0.004 0.003 0.027* 0.000 

Offset 

(kg m-2) 

0.11 0.04 0.00 0.04 0.03 2.33** 0.11 0.00 0.10 0.07 0.06 0.07 0.15 2.57** 0.11 
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Table 3: Mean distance between GPS stations and the nearest MWR satellite grid-point within the 7 x 7 box surrounding each 

station (MWR grid resolution 0.25°x0.25°). Units: km. NA=not available. 790 

 

 PPTG LDIS DEHA DESI MAGT BOUL ABMF ABD0 ABER GOSI FFE0 MAGA FNA0 CBE0 HOUE 

AMSR2 40.0 20.0 20.7 20.0 46.3 26.3 20.5 42.4 41.5 45.5 42.1 45.7 30.8 41.1 21.0 

F18 80.1 NA 73.8 NA 77.1 NA 81.9 93.5 93.8 82.5 82.2 76.3 NA 82.0 NA 

GMI 38.8 20.5 11.7 20.5 21.2 12.7 18.5 40.5 40.3 42.5 40.5 20.4 28.1 29.7 18.3 

Windsat 40.8 20.5 22.3 20.5 47.3 29.2 40.2 54.8 54.8 46.6 43.0 46.5 31.5 44.5 21.7 
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Table C1: Monte Carlo tests of linear regression using the ordinary least-squares (OLS) and the York et al. (2004) method. In 

all simulated cases, the true slope is 1 and true offset is 0. Noise is simulated in both variables according to the standard 795 

deviation values indicated in the first two columns. The OLS method assumes noise is present only in the y variable. The York 

method accounts for errors in both variables, with uncertainties specified in the 3rd and 4th columns. The other columns report 

the mean and standard deviation (STD) of estimated parameters (bias, slope, and offset), and their mean standard errors (SE). 

The column “p<0.05” indicates the fraction of results that have p-values smaller than 0.05. The expected value for the latter is 

0.05. Each data set was run for 105 simulations. Mean values and “p<0.05” values which differ significantly from the expected 800 

values are highlighted in bold. 

 

      OLS 


Simulated 

noise

Assumed 

noise 
Bias Slope  Offset 

 x y ux uy mean STD SE p<0.05 mean STD SE p<0.05 mean STD SE p<0.05 

1 0 1 0 1 -0.0005 0.1561 0.1533 0.0507 1.0000 0.0132 0.0131 0.0495 -0.0011 0.4272 0.4231 0.0501 

2 1 1 1 1 0.0001 0.2207 0.2165 0.0500 0.9934 0.0186 0.0184 0.0659 0.1991 0.5984 0.5950 0.0636 

3 1 1 4 1 0.0015 0.2203 0.2170 0.0574 0.9935 0.0185 0.0185 0.0644 0.1964 0.5973 0.5954 0.0619 

4 1 1 4 4 0.0000 0.2207 0.2167 0.0513 0.9934 0.0185 0.0185 0.0656 0.1983 0.5980 0.5955 0.0633 

5 4 1 1 1 0.0013 0.6445 0.6261 0.1833 0.9038 0.0453 0.0491 0.4922 2.8825 1.4823 1.5955 0.4343 

6 1 4 1 1 -0.0002 0.6450 0.6261 0.1358 0.9937 0.0545 0.0539 0.0515 0.1890 1.7580 1.7385 0.0516 

7 4 1 1 0.25 0.0031 0.6431 0.6326 0.0508 0.9038 0.0453 0.0491 0.4933 2.8833 1.4820 1.5955 0.4330 

8 1 4 0.25 1 -0.0026 0.6441 0.6325 0.0525 0.9937 0.0543 0.0539 0.0517 0.1870 1.7503 1.7379 0.0507 

9 5% 5% 5% 5% -0.0007 0.3567 0.3499 0.0512 0.9831 0.0311 0.0294 0.1021 0.5087 0.7585 0.9490 0.0370 

10 10% 10% 10% 10% 0.0001 0.7130 0.7005 0.0549 0.9359 0.0597 0.0567 0.2175 1.9362 1.4757 1.8371 0.1256 

 

     York fit 


Simulated 

noise

Assumed 

noise 
Slope Offset 

 x y ux uy mean STD SE p<0.05 mean STD SE) p<0.05 

1 0 1 0 1 1.0000 0.0132 0.0131 0.0495 -0.0011 0.4272 0.4231 0.0501 

2 1 1 1 1 1.0001 0.0188 0.0185 0.0514 -0.0032 0.6040 0.5969 0.0517 

3 1 1 4 1 1.0063 0.0188 0.0187 0.0576 -0.1860 0.6045 0.6022 0.0560 

4 1 1 4 4 1.0001 0.0187 0.0185 0.0511 -0.0044 0.6038 0.5974 0.0508 

5 4 1 1 1 0.9530 0.0513 0.0504 0.1805 1.4073 1.6586 1.6340 0.1620 

6 1 4 1 1 1.0527 0.0565 0.0556 0.1404 -1.5818 1.8132 1.7890 0.1269 

7 4 1 1 0.25 1.0029 0.0552 0.0543 0.0516 -0.0906 1.7783 1.7518 0.0511 

8 1 4 0.25 1 1.0004 0.0546 0.0539 0.0516 -0.0155 1.7611 1.7386 0.0507 

9 5% 5% 5% 5% 1.0002 0.0245 0.0243 0.0498 -0.0047 0.5383 0.5326 0.0508 

10 10% 10% 10% 10% 1.0014 0.0498 0.0483 0.0543 -0.0298 1.0897 1.0605 0.0541 
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Figure 1: Illustration of the variation of IWV as a function of height in the case of an idealized moisture profile with exponential 805 

vertical decay with a rate 𝛾 = 4 ∙ 10−4 m-1 (scale height 1/ 𝛾 = 2.5 km); (a) 𝑦 = 𝑥 ∙ exp (−𝛾∆ℎ) as a function of 𝑥 for a fixed 

∆ℎ > 0; (b) bias, ∆= 𝜇𝑦 − 𝜇𝑥, as a function of ∆ℎ (Eq. (3)); (c) slope, 𝛼, as a function of ∆ℎ (Eq. (4)). The slant dashed lines 

in (b) and (c) represent the thin layer approximations (last right-hand sides of Eqs. (3) and (4), respectively).  

 

  810 
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Figure 2: Real water vapour profiles observed by radiosonde station 78897 (Le Raizet, Guadeloupe, France): (a) monthly mean 

profiles for year 2020; (b) similar to (a) for altitudes below 5 km; (c) IWV scatter plot, with upper-level IWV plotted on the y-

axis, and total column IWV on the x-axis, for five different height differences, ∆ℎ=200, 400, 600, 800, 1000 m. The radiosonde 

data include 00UTC and 12UTC soundings. The colour code indicated in (a) is valid for all plots. 815 
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 820 

Figure 3: Monthly mean estimates computed from the radiosonde observations shown in Fig. 2c, for ∆ℎ=25 to 1000 m, by step 

of 25 m: (a, d) bias, ∆, and relative bias, ∆ 𝜇𝑥⁄ ; (b, c) slope and offset parameters fitted from Eq. (B2) by ordinary least-squares; 

(e, f) standard errors of the slope and offset parameters. 

 

 825 
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Figure 4: Monthly estimates of the polynomial coefficients for the slope (a) and the offset (b), according to Eqs. (6a) and (6b), 

respectively, limited to order 1. The different curves show results for three different radiosonde stations (labelled by their 830 

WMO codes: 78897, 78954, and 78526) and two regression methods (OLS and WLS). The OLS and WLS results are almost 

superposed and are not labelled. Note that for station 78526 only two months of observations (January and February) were 

available in 2020. The error bars indicate the 95% confidence interval for each estimated parameter. 

 

  835 
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Figure 5: IWV correction error, 𝑥𝑖,𝑐 − 𝑦𝑖, with: (a) monthly coefficients, and (b) yearly coefficients, as a function of time and 

height difference, ∆ℎ=25..500 m. Both models used polynomials of order 5 and weighted least-squares estimation. The time 

is colour-coded in (a), while the height difference is colour coded in (b). The dots aligned in filaments correspond to a given 

time and varying ∆ℎ, in both plots. 840 
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Figure 6: Monthly mean bias (a) and standard deviation of the IWV correction error (b) with the monthly coefficients up to 845 

order 5 and WLS, and slope (c) and offset (d) parameters, 𝛼𝑐 and 𝛽𝑐, of the best linear fit after correction, 𝑦𝑖 = 𝛼𝑐𝑥𝑖,𝑐 + 𝛽𝑐, as 

a function of time and height difference. The colour code for time is the same as in Fig. 2. 
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 850 

 

Figure 7: scatter plots of IWV observations from two GPS stations at different elevations (HOUE, 418 m, and ABMF, 15 m), 

before correction (a, d), after correction with a simple scaling factor model (b, e), and after correction with the proposed model 

fitted from a radiosonde climatology (c, f). The slope and offset parameters were either fitted by an ordinary least-squares 

method (a, b, c) or by the York et al. (2004) method accounting for errors in both coordinates (d, e, f). The data cover the 855 

period from 1 January to 29 February 2020, with a temporal resolution of 1 hour. 
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 860 

Figure 8: Variation of (a, d) bias, (b, e) slope, and (c, f) offset estimated from pairs of GPS stations as a function of between-

station height difference, ∆ℎ. The blue dots correspond to the results before correction, and the red dots after correction, with: 

(a, b, c) the scaling model, v1, and (d, e, f) the proposed model fitted from a radiosonde climatology, v2. The results include 

105 inter-comparisons with positive height differences, from a total of 15 GPS stations located over the Guadeloupe islands. 

The grey vertical lines indicate the stations which have elevations above 50 m, namely: FNA0 (122 m), CBE0 (374 m), and 865 

HOUE (418 m), the comparisons of which are also highlighted by ellipses in Fig. 8d. 
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 870 

Figure 9: (a) bias, (b) slope – 1, and (c) offset estimated from all (210) pairs of GPS stations after correction with model v2. 

The station names along the x-axis refer to comparisons when the stations are in x while the colour code indicates comparisons 

when the stations are in y. The bias is always reported as ∆ = 𝜇𝑦 − 𝜇𝑥 and the linear regression as 𝑦 = 𝛼 ∙ 𝑥 + 𝛽. For example, 

station CBE0 has a positive bias (red curve) when considered in y, while it has a negative bias when considered in x. The 

comparison results from Fig. 8 were transformed using ∆′ = 𝜇𝑥 − 𝜇𝑦, and 𝛼′ and 𝛽′ according to Eqs. (B4a) and (B4b), when 875 

necessary. 
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Figure 10: Bias, slope, and offset results for GPS – GPS comparisons (blue line = median of all GPS comparisons from Fig. 9, 880 

except for the full year here) and for GPS – MWR comparisons from four different satellites (AMSR2, F18, GMI, and 

WINDSAT; black dashed line = mean of all satellite results), for all of year 2020. Slope and offset are estimated with York et 

al. (2004) method. Bias and offset values significantly different from 0, and slope values significantly different from 1, are 

marked with a circle (p-value ≤ 0.01). Pearson correlation coefficients between GPS – GPS and mean GPS – MWR results are 

indicated in the lower left angle of each plot.  885 
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Figure B1: Illustration of different cases of paired observations with perfect scaling (𝜶 = 1), imperfect scaling (𝜶 > 1 or 𝜶 < 

1), and positive or negative bias (∆ > 𝟎 or ∆ < 𝟎). Each case has a different implication on the offset parameter 𝜷 obtained 

from a linear regression with the model 𝒚 = 𝜶𝒙 + 𝜷. The regression lines are shown as dotted lines, with red colour indicating 

negative offsets and blue colour indicating positive offsets. The distributions of data around the regression lines are represented 890 

schematically by the red and blue ellipses. 
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Figure C1: Monte Carlo tests of linear regression using the ordinary least-squares (OLS) and the York et al. (2004) method. 895 

The plots show the distributions of slope, offset, and respective p-values from the hypothesis tests (H0: slope equal to one, and 

H0: offset equal to zero, respectively). The dotted vertical lines indicate the mean values. Mean and standard deviation are 

reported in each plot. The true slope is 1 and the true offset is 0. (a-d) correspond to case n°5 from Table C1, and (e-h) 

correspond to case n°7. Each case is computed from 105 simulations (see Appendix C for further details).  
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