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ABSTRACT

The Global Energy and Water Cycle Exchanges project (GEWEX) water vapor assessment’s (G-VAP)

main objective is to analyze and explain strengths and weaknesses of satellite-based data records of water

vapor through intercomparisons and comparisons with ground-based data. G-VAP results from the in-

tercomparison of six total column water vapor (TCWV) data records are presented. Prior to the in-

tercomparison, the data records were regridded to a common regular grid of 28 3 28 longitude–latitude. All

data records cover a common period from 1988 to 2008. The intercomparison is complemented by an analysis

of trend estimates, which was applied as a tool to identify issues in the data records. It was observed that the

trends over global ice-free oceans are generally different among the different data records. Most of these

differences are statistically significant. Distinct spatial features are evident in maps of differences in trend

estimates, which largely coincide withmaxima in standard deviations from the ensemblemean. The penalized

maximal F test has been applied to global ice-free ocean and selected land regional anomaly time series,

revealing differences in trends to be largely caused by breakpoints in the different data records. The time,

magnitude, and number of breakpoints typically differ from region to region and between data records. These

breakpoints often coincide with changes in observing systems used for the different data records. The TCWV

data records have also been compared with data from a radiosonde archive. For example, at Lindenberg,

Germany, and at Yichang, China, such breakpoints are not observed, providing further evidence for the

regional imprint of changes in the observing system.

1. Introduction

Water vapor plays a central role in Earth’s energy and

water cycle, making it a key variable also for climate

analysis. The strong absorption properties of water va-

por in the infrared part of the radiation spectrum make

it the most important natural greenhouse gas. Fast-

acting water vapor feedback mechanisms are critical

for understanding Earth’s climate (Lacis et al. 2010). In

addition, it is one constituent in the large and complex

nonlinear climate system, and its interactions with other

components of the climate system such as clouds and

precipitation are still not fully understood. Analyzing re-

cent decades of global water vapor distribution and vari-

ability is expected to help extend our understanding of

how the climate system responds to increasing greenhouse

gas concentrations.

To date, a large variety of water vapor data records is

available (see, e.g., http://gewex-vap.org/?page_id5309

or http://ecv-inventory.com). Without proper background
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information and understanding of the limitations of avail-

able data records, these data may be incorrectly utilized or

misinterpreted. Thus, GDAP has initiated G-VAP, the

primary purpose of which is to quantify the current state

of the art in water vapor products being constructed for

climate applications. G-VAP intends to answer, among

others, the following questions:

1) How large are the differences in observed temporal

changes in long-term satellite data records of water

vapor on global and regional scales?

2) Are the differences in observed temporal changes

within uncertainty limits?

3) What is the degree of homogeneity of each long-term

satellite data record? Are there any discontinuities

(breakpoints)?

G-VAP considers upper-tropospheric humidity, specific

humidity, and temperature profiles as well as TCWV.

More details on G-VAP can be found online (http://

www.gewex-vap.org).

In this study, we focus on G-VAP results related to

TCWV. We use the acronym TCWV here to describe

the mass of water vapor per unit area from Earth’s

surface to space. TCWV is a widely used variable in

atmospheric science, but the nomenclature in the field is

not standardized. TCWV is sometimes referred to as

precipitable water or integrated water vapor, and by

acronyms such as TPW, IPW, PWAT, and IWV. TCWV

is measured in kilograms per meter squared.

Several studies have been conducted to characterize the

quality of individual records or of a selection of TCWV

data records by intercomparison (e.g., Divakarla et al.

2014; Schröder et al. 2013; Sohn and Smith 2003), by

comparison with ground-based data (e.g., Bedka et al.

2010; Lindstrot et al. 2014; Rienecker et al. 2011), or both

(e.g., Reale et al. 2012). Also, various studies have inter-

compared and analyzed trend estimates using a subset

of available long-term data records of TCWV (e.g.,

Trenberth et al. 2005; Mears et al. 2007; Mieruch et al.

2014, partly summarized in Sherwood et al. 2010). These

studies focus on the ice-free ocean and have shown, among

others, an increasing overallmean trend inTCWV.Results

from these and other studies are often difficult to compare

and interpret because different reference data records

might have been used, the data records might have been

subjected to different types of preprocessing, different

metrics might have been considered, or different periods

and/or regions were analyzed. Thus, the comparability of

the results from the quality analysis and trend estimation is

limited and challenging to conduct through a literature

review. To our knowledge, a consistent characterization of

the quality and stability of TCWVdata records considering

all mature and freely available data records with at least a

10-yr record has not been completed to date and is cur-

rently the focus of G-VAP as well as of this paper.

This paper presents results from the G-VAP analysis

and attempts to provide answers to the questions given

above. Six of the longest (longer than 25 yr) TCWV data

records that were readily available form the basis for this

study. These are 1) HOAPS from the EUMETSAT’s

CM SAF, 2) SSM/I-based TCWV merged 18 monthly

water vapor product provided by REMSS, 3) NVAP-M

from the NASA MEaSUREs program, and reanalysis

products from 4) ECMWF, 5) NASA, and 6) NCEP:

ERA-Interim, MERRA, and CFSR.

Our approach here is to use the analysis of trend es-

timates to identify issues in the data records. Our results

should not be interpreted as supporting or otherwise

ruling out any possible physical changes of TCWV as-

sociated with climate change. A side aspect of this paper

is to increase the awareness that caution is needed when

using these data for trend analysis and to foster im-

provements toward more homogeneous long-term

datasets.

An overview of the various data records is given in

section 2. Section 3 introduces the methodologies used

for the intercomparison, the trend estimation, and the

homogeneity analysis. Results are presented in section 4,

first on a global ice-free ocean scale, then on selected land

regions, and finally on local scale at Lindenberg, Germany,

andYichang, China. A summary and conclusions are given

in section 5. Acronyms are defined in the appendix.

2. Data

A brief description of the satellite-based, reanalysis,

and in situ products utilized in this study follows. An

overview of the considered data records is provided in

Table 1. TCWV data records are readily available as

specified in Table 1.

a. Satellite-based and merged products

1) HOAPS

The TCWV product is part of the HOAPS product

suite (Andersson et al. 2010) and is purely based on

satellite information. TCWV from HOAPS covers the

months from July 1987 to December 2008 and is defined

over the global ice-free oceans. Here, monthly means

on a regular 0.58 3 0.58 longitude–latitude grid are uti-

lized. TCWV is derived from SSM/I passive microwave

radiometers on board the polar-orbiting DMSP plat-

forms F-08, F-10, F-11, F-13, F-14, and F-15. Information

on the satellites utilized per month is contained in the

HOAPS products. The statistical retrieval for TCWV is

described in Schlüssel andEmery (1990) and is applicable
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under all sky conditions, except in presence of strong

scattering such as during heavy precipitation. The mean

fields are computed from the swath-based data by ag-

gregating all SSM/I pixels that have their center of the

field of view falling in the respective grid box and arith-

metic averaging over the month. A monthly mean is

computed only if two-thirds of the days within a month

contain valid observations. Further details are given in

Andersson et al. (2010) and Fennig et al. (2012).

HOAPS was jointly developed by the University of

Hamburg and the MPI-M and has meanwhile success-

fully been transferred to CM SAF. The most recent

release, version 3.2, is based on homogenized SSM/I

observations (Fennig et al. 2013).

2) REMSS

The TCWVdata record fromREMSS is available over

the global ice-free ocean on a regular 18 3 18 longitude–
latitude grid and contains monthly means from January

1988 to the month of most recent processing. The TCWV

values come fromSSM/I (F-08,F-10,F-11,F-13,F-14, and

F-15), the F-16 and F-17 SSMIS, AMSR-E (Aqua),

and WindSat (Coriolis) instruments. These microwave

radiometers have been carefully intercalibrated at the

brightness temperature level and the version 7 (V7)

ocean products have been produced using a consistent

processing methodology for all sensors. Information on

the satellites utilized per month is contained in the V7

products. The TCWV retrieval is described in Wentz

(1997) and the data record from REMSS is made using a

two-step construction process. First, monthly 18 maps

from the individual satellite TCWV values are generated

based on 0.258-grid satellite products from REMSS. In a

second step, quality control measures and post hoc

adjustments are applied. This includes for example,

the application of small constant corrections to

AMSR-E (20.2 kgm22) and WindSat (20.05 kgm22)

data prior to merging. This way the observed bias

between AMSR-E/WindSat and SSM/I as well as

SSMIS is removed. The combined TCWV values from

all instruments are calculated using simple averaging.

TCWV values for a specific 18 3 18 grid cell are calcu-

lated only if the cell contains more than 160 observa-

tions during one month, if ice is present for only#30 of

the cases, and if the calculated mean day of the month,

derived by averaging the time of the data falling within

the cell, is within 6 days of the center day of the month.

The V7 products are described in Hilburn et al. (2010)

and results from comparisons to TMI are shown in

Wentz (2015). The TCWV data record was obtained

online (http://www.remss.com; accessed 11April 2013).

Note that, in contrast to HOAPS and NVAP-M, the

REMSS TCWV data record also includes data from

SSMIS, AMSR-E, and WindSat.

3) NVAP-M

NVAP-M was created under the NASA MEaSURES

program and consists of three parallel data records for

climate, weather, and ocean uses (Vonder Haar et al.

2012). The NVAP-M climate component is considered

here and contains daily TCWV on a regular 18 3 18
longitude–latitude grid from January 1988 to December

2009. NVAP-M is a global, merged atmospheric water

vapor data record that includes TCWV from SSM/I (F-08,

F-10, F-11, F-13, F-14, and F-15) over ocean, HIRS

(NOAA-9–NOAA-12, NOAA-14–NOAA-17) and AIRS

(Aqua) water vapor products over land, and ocean and

data from the IGRA. Details on the utilized retrieval

schemes are given in Vonder Haar et al. (2012). The

merging process performs an error-weighted average

on all SSM/I, HIRS, and AIRS retrievals within a grid

box for each day. Each sensor platform is assigned a

variance based on comparisons with other observations

or from published values, which determines the sen-

sor’s weight [see Vonder Haar et al. (2012) for more

details]. Daily averages were obtained online (https://

eosweb.larc.nasa.gov/project/nvap/nvap-m_table; accessed

21 November 2012). Note that, in contrast to HOAPS and

REMSS, the NVAP-M TCWV data record also includes

data from HIRS and AIRS over ocean.

TABLE 1. Data record overview. Resolutions are given for the data as downloaded from the institution’s homepage and are not necessarily

the highest possible resolution available from the record owner.

Data record

name Owner Model scheme, version

Temporal

coverage

Spatial

resolution

Temporal

resolution

NVAP-M NASA Climate 1988–2009 18 Daily

HOAPS EUMETSAT Version 3.2 Jul 1987–Dec 2008 0.5 8 Monthly

REMSS Remote Sensing

Systems

Version 7 1988–present 18 Monthly

ERA-

Interim

ECMWF ECMWF IFS, version Cy31r2, 4D-Var 1979–present 18 Monthly

MERRA NASA GEOS, version 5.2, GSI 1 IAU (3D-Var) 1979–present 0.58 3 0.6678 Monthly

CFSR NCEP NCEP Coupled Seasonal Forecast System, GSI 1979–2010 0.58 Monthly
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b. Reanalysis products

Reanalyses products are generated in offline runs of

advanced operational atmospheric general circulation

models, including their data assimilation systems. These

systems were operated with a fixed version during the

production period, while data input to the system have

changed over the years. Three reanalyses products that

cover the modern satellite era from 1979 to the present

are considered. In the following, a short overview is

given for each of the reanalysis products used.

1) ERA-INTERIM

ERA-Interim (Dee et al. 2011) is a third-generation

reanalysis and improves on previous versions, for example,

by using a four-dimensional variational data assimilation

(4D-Var) scheme for atmospheric analysis and variational

bias correction. ERA-Interim is operated in 12-hourly

analysis cycles using the ECMWF IFS version Cy31r2.

ERA-Interim output has a native horizontal resolution of

about 0.758 (T255), 60 vertical levels, and a temporal res-

olution of 6h (3D fields) and 3h (2D fields). It assimilates

observations from a large variety of instruments, among

them radiances from several satellites, among them

ATOVS and SSM/I [see Dee et al. (2011) for more de-

tails]. Themonthly means of TCWVwere obtained online

(http://apps.ecmwf.int/data-records/; accessed 9November

2012) with a spatial resolution of 18 longitude–latitude.

2) MERRA

MERRA (Rienecker et al. 2011) was generated with

version 5.2.0 of the GEOS atmospheric model and a

3D-Var assimilation scheme that is based on the GSI

scheme, with a 6-hourly update cycle. Also, the GEOS-5

implements IAU to slowly adjust themodel states toward

the observed state. MERRA assimilates a large variety

of ground-based, in situ, and satellite data, among them

radiances from ATOVS and SSM/I, and applies a varia-

tional bias correction scheme.An overview of assimilated

data is given in Rienecker et al. (2011) (and at http://

gmao.gsfc.nasa.gov/research/merra/input.php). MERRA

output has a native model resolution of 0.58 3 0.6678with
72 vertical levels and a temporal resolution of up to 1h

(2D fields). Themonthly means of TCWVwere obtained

online (http://disc.sci.gsfc.nasa.gov/; accessed 10 Novem-

ber 2012) in native spatial resolution.

3) CFSR

The CFSR (Saha et al. 2010) is a third-generation

global reanalysis using the operational GSI version

from 2007, which includes a 3D-Var and first-order time

interpolation to the observations and variational bias

correction. The atmospheric analysis system, the GFS

of 2003, is operated at a 6-hourly cycle. As with the

other reanalyses, it assimilates a large variety of mea-

surements and is the first NCEP reanalysis that assim-

ilates satellites radiances, among them radiances from

ATOVS [see Saha et al. (2010) for details on assimi-

lated data]. The CFSR global atmosphere resolution is

;38 km (T382) with 64 vertical levels and is available

on a 0.58 regular grid with hourly temporal resolution.

Here, the monthly means of TCWV were obtained

online from UCAR (http://rda.ucar.edu/pub/cfsr.html;

accessed 21 November 2012) in 0.58 spatial resolution.
Note that SSM/I-based wind speed products, but no

SSM/I radiances, are assimilated.

All considered satellite and reanalysis products utilize

SSM/I observations from F-08, F-10, F-11, F-13, F-14, and

F-15. While the use of the data from these spacecraft is a

common denominator, the data are not identical. There

are differences in the sensor intercalibration, precipita-

tion and sea ice masking, and the retrieval algorithms–

assimilation systems. The common denominator data are

not that common.

c. In situ observations

The HomoRS92 data record is a multistation long-

term radiosonde archive and is based on IGRA (Durre

et al. 2006). This data record consists of quality con-

trolled radiosonde and pilot balloon observations at

more than 1500 globally distributed stations with vary-

ing periods of record. The archive has been further im-

proved by additional quality control, data gap filling

at existing stations, and additional radiosonde data. The

homogenization method described in Dai et al. (2011)

has been applied and the solar radiation dry bias for

Vaisala RS92 radiosonde data from 63 stations has also

been corrected (Wang et al. 2013). HomoRS92 covers

the period from January 1945 to December 2010 (L.

Zhang 2012, unpublished data; available on request).

The data records considered in this study are a subset

of the currently available data records. A decent over-

view of available satellite, reanalysis, ground-based, and

in situ data records is provided at the G-VAP web page

(http://gewex-vap.org/?page_id5309).

3. Methodology

a. Data preprocessing

All subsequent analysis is carried out on the basis of

monthly means. The CFSR, ERA-Interim, HOAPS,

MERRA, and REMSS data records are available as

monthly means. NVAP-M contains daily averages, and

the daily values within a month are arithmetically av-

eraged using all valid observations to compute monthly
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means. Prior to further processing fill values, missing

values and values that are outside the validity range are

assigned a unique undefined value.

To allow a straightforward intercomparison, the

analysis is carried out on a common grid and time pe-

riod. The common period is defined as the minimum

(maximum) start (stop) time common in all data re-

cords. This leads to a common time range covering the

full years 1988–2008. The common grid is defined as the

minimum integer multiple applicable to all data record

grids that leads to a grid resolution of 28 3 28. To

remove a shift in the spatial grid between the satellite-

based products and the reanalysis products, the reanalysis

grids are shifted by half a grid box. Therefore, the CFSR,

ERA-Interim, and MERRA monthly means are linearly

interpolated to a grid with unchanged resolution but

changed center positions. Then, all six data records are

arithmetically averaged onto the common grid by con-

sidering all valid observations within a grid cell.

HOAPS and REMSS are only available over the ice-

free oceans, whereas the reanalysis products andNVAP-M

provide global coverage. Thus, common land–sea and sea

ice masks need to be applied to allow fair comparisons.

The land–sea mask is computed from the GTOPO30 of

the USGS (available at https://lta.cr.usgs.gov/GTOPO30;

accessed 12 August 2008). If a single value of the high

spatial resolution GTOPO30 data within a 28328 grid cell

is classified as land, this grid cell is classified as land. The

sea ice mask is based on the HOAPS sea ice mask

(Andersson et al. 2010). Again, we apply a conservative

sea ice mask, that is, the grid is classified as ice contami-

nated if one pixel within the grid box at any time during

the common period was classified as ice covered.

Only those stations from the HomoRS92 data record

were taken into account where monthly data series were

available without gaps over the entire common time

period, that is, from 1988 to 2008. Monthly means were

calculated, if at least two profiles reaching 300hPa were

available per day on 20 days per month. These filtering

criteria are fulfilled by 55 stations with the majority

being located in China (see Fig. 4). Data from these

stations are used for comparison.

b. (Inter)comparison and trend analysis

The intercomparison is carried out relative to the en-

semble mean. The ensemble mean is calculated as arith-

metic average using all valid data and all six data records.

Area means are calculated using latitude-weighted av-

eraging. The intercomparison analysis considers the ab-

solute and relative standard deviation (relative to the

ensemble mean).

The trend estimation largely follows the work of

Weatherhead et al. (1998) and Mieruch et al. (2014). A

linear trend model was applied that fits the SST-based

index for determining El Niño strength (available at

http://coaps.fsu.edu/jma; accessed 6 June 2014) and four

frequencies to allow an asymmetric fitting of the annual

cycle, each of the four terms normalized by its standard

deviation. These steps are carried out simultaneous with

the trend estimation such that the results comprise the

anomaly, the trend estimate, and the mean amplitude

associated with the SST index and the four frequencies.

The estimation of the uncertainty of the trend again

follows Weatherhead et al. (1998) and considers the

noise as computed from the anomaly and autocorrela-

tion. The ratio of the trend and uncertainty estimates

is subjected to a two-sided t test to compute the coverage

probability. If the coverage probability exceeds 95%,

the trend estimate is considered to be significantly

different from the null hypothesis of a trend of

0 kgm22 decade21; that is, the level of significance is 0.05.

To put the trend estimates into a physical perspective

we also computed the regression of TCWV in percent

and SST in kelvins using the NOAA Optimal In-

terpolation SST, version 2 (Reynolds et al. 2002). Prior

to the regression, the SST and TCWV anomaly time

series are smoothed with a 12-month low-pass filter as in

Mears et al. (2007). Following, for example, Hyland and

Wexler (1983), the change in saturation vapor pressure

as function of air temperature and of air temperature

change can be computed and, assuming constant relative

humidity and pressure, be transferred into a change in

mixing ratio. For a temperature change of 1K the ex-

pected change in mixing ratio is between 6% at 300K

and 7.5% at 275K.We consider SST and TCWV instead

of near-surface air temperature and mixing ratio. Both

might lead to an amplification of the regression

(Trenberth et al. 2005). Here we consider the regression

using global ice-free ocean values within 608N–608S.
Advection associated with low pressure systems in the

extratropics can lead to observed regression values

larger than the maximum given above. Note that the

regression will also be affected by the quality of the

utilized SST data record (see the Group for High Res-

olution SST for a discussion of the quality of SST data;

www.ghrsst.org). Other factors that can affect the cor-

relation between TCWV and SST are described in, for

example, Mieruch et al. (2014).

c. Homogeneity analysis

The aim of the homogeneity analysis is to detect abrupt

(artificial) shifts in time series, that is, a discontinuity in

the time series of, in our case, TCWV not due to geo-

physical causes. Here these are called breakpoints, which

might arise because of a variety of causes including sen-

sor channelization and calibration, algorithm changes or
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changes in their ancillary data, and changes in spatial sam-

pling coverage. Here the penalized maximal F test

(Wang 2008a,b) is utilized to detect breakpoints because

it can be applied to time series of (deseasonalized)

anomalies and of anomaly differences and because it

does not require supervision. The PMF test assumes that

the time series is not affected by any sudden change

in the linear trend (Wang 2008a).Wang (2008a) assessed

the accuracy of the PMF test relative to the accuracy of a

two-phase regression model and found superior quality

in particular also for the rate of detecting the breakpoint

position correctly. Note that the uncertainty in the es-

timation of the time of a break increases when the in-

ternal variance is larger than the variance introduced by

the magnitude of the breakpoint (Lindau and Venema

2016). Here breakpoints are considered if the associated

level of significance is 0.05 or smaller. Then, the null

hypothesis of a break-free time series needs to be re-

jected. Note that the PMF test is applied to identify

potential breakpoints in the data records and not to

homogenize the data records. An overview of available

homogenization schemes, among them the PMF test,

and a discussion of the quality of the homogenization is

given in Venema et al. (2012).

For each breakpoint detected, the PMF test returns the

step size that corresponds to the size of the shift in the

model fitted to the time series at the breakpoint. We also

calculate the step size relative to the variability, further

called break size. The variability used to get the break size

is calculated as the mean standard deviation based on

6-month time segments before and after the detected

breakpoint (i.e., in total 12 months). In some cases, two

breakpoints occur so close to each other that the time span

for calculating the variability is less than 6 months. Then

the variability was still calculated, if at least one of the two

time segments had the minimum length of 6 months.

For assessing the homogeneity of the six datasets, the

following time series are computed and analyzed as out-

lined above: 1) anomaly differences relative to HOAPS

(ocean) and ERA-Interim (land) and 2) anomaly differ-

ences relative to data at selected stations of HomoRS92.

ERA-Interim has been chosen as reference because it

exhibits the least suspicious features in terms of seeming

breakpoints and intensity of maxima and minima in

Hovmöller diagrams of TCWV anomalies (not shown).

Similar conclusions can be drawn for HOAPS and

REMSS, which both have the additional advantage of

relying on SSM/I observations only andwhich both utilize

homogenized SSM/I radiance data. Here, HOAPS has

been chosen. Note that seeming breakpoints in ERA-

Interim or HOAPS will also be visible in the anomaly

differences and that the chosen reference will affect the

time, the number, and the step size.

Last, we compare the breakpoint positions with

changes in the observing systems and changes in the as-

similation scheme of the considered reanalyses. Tempo-

ral coincidence is defined here if the difference between

both events is within 63 months, as in the accuracy

analysis in Wang (2008a).

4. Results

We first show results from the analysis of global maps

of trend estimates and homogeneity tests using anomaly

differences over global ice-free oceans for the six data

records. This way the degree of consistency and the

reasons for observed differences in trends are analyzed

and explained (section 4a). Then, differences in absolute

trend estimates are compared to the standard deviation

of differences to the ensemble mean to find regions of

maxima common and uncommon in both analyses

(section 4b). Anomaly differences and heat maps are

presented based on data from three distinct regions ev-

ident in results from both analyses. Last, results from the

comparisons with HomoRS92 and associated homoge-

neity tests are shown (section 4c).

a. Global analysis

Figure 1 shows global maps of TCWV trend estimates

(kgm22 yr21) for all six data records. Overall the trend

patterns are quite similar among the data records, in

particular over the ocean, with generally large positive

trends in the west Pacific and smaller areas of negative

trends in the east Pacific within two bands north and

south of the equator. Here the imprint of El Niño–
Southern Oscillation is seen. In Fig. 1 it seems that the

dominating factor for significance is the magnitude of

the trend, with lowest number of grids with significant

trends in ERA-Interim and maximum number of sig-

nificant trends in CFSR.

Although the trend patterns are similar, the associ-

ated regional averages of trends differ in magnitude.

The two passive microwave only products, HOAPS and

REMSS, agree reasonably well in terms of trend mag-

nitudes. Both records heavily rely on SSM/I observa-

tions and can thus be expected to be similar. In contrast

to these SSM/I-based data records, the reanalysis data-

sets show larger differences with ERA-Interim (CFSR)

showing smallest (largest) average trends (over ocean)

among the reanalysis records and in general. When

looking closer at Fig. 1 the impression of a general bias

in trend estimates is actually dominated by contributions

from the oceans, in particular in the tropics. Thus, for

each data record the trend has been estimated for the

global ice-free oceanwithin 608N–608S, and the results are
given in Table 2 together with associated uncertainties.
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The trend estimates in Table 2 are sorted in ascending

order and confirm the impression based on results shown

in Fig. 1 that there are large differences in the trends over

the ocean. The values range from20.11kgm22 decade21

(ERA-Interim) to 1.21kgm22 decade21 (CFSR). Asso-

ciated uncertainties are typically $0.06kgm22 decade21

(REMSS) and #0.20kgm22 decade21 (NVAP-M). Fol-

lowing Mieruch et al. (2014) and ignoring the covariance

between trend estimates, the trends given in Table 2 are

significantly different, except for HOAPS and REMSS as

well as for NVAP-M and MERRA. Sherwood et al.

(2010) provide a table of trend estimates based on liter-

ature values on data of various coverage and temporal

length. Here, we confirm their conclusion that the ‘‘pre-

cise climate dependence of water vapor’’ cannot yet be

established ‘‘from observed trends’’ by using data records

on common grid and common period. The regression

coefficients are also provided in Table 2 to comment on

the physical soundness. The order and the (dis)agreement

are similar to the results for the trends. It seems that,

except for HOAPS and REMSS, the regression values

are outside the expected range of 6%K21 at 300K and

7.5%K21 at 275K (see section 3b). When using the

global ice-free average SST, the theoretical expected

value is 6.2%K21, which is significantly different from all

estimates given in Table 2. The latter conclusion is still

FIG. 1. Trend estimates in TCWV (kgm22 yr21) for the six different data records: (top left) MERRA, (top right)

CFSR, (middle left) ERA-Interim, (middle right) NVAP-M, (bottom left) HOAPS, and (bottom right) REMSS.

Red contours indicate the 95% coverage probability. Data from HOAPS and REMSS are defined over ice-

free oceans.
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valid when the analysis is carried out for the tropical

ocean (not shown). Note that the observed regression can

be larger than expected because of the impact of, for

example, advection and tropospheric amplification of

surface warming (e.g., Santer et al. 2005). We conclude

that the analysis of regression is a supportive and valuable

approach for the interpretation of trend estimates. Re-

sults from an analysis of regression alone need to be

considered with caution because of the assumptions that

enter the expectation.

The large differences in trends bring up the question

of how these can be explained. To study this in more

detail, anomaly differences for the global ice-free ocean

are analyzed using the PMF test. The results are shown

in Fig. 2. Note the difference in the range at the y axis

among the panels and keep in mind that HOAPS also

can be affected by breakpoints. All five anomaly dif-

ferences exhibit statistically significant breakpoints of

various step sizes. The largest (smallest) step sizes are

found for NVAP-M and CFSR (REMSS). The moist-

ening in themid-1990s inNVAP-M is also observed over

the tropical ocean and tropical land areas as shown in

Vonder Haar et al. (2012). ERA-Interim exhibits the

largest number of breakpoints. This can partly be ex-

plained by the small variance, even minimal variance

among the considered data records in the early 2000s,

and its impact on significance estimation. Obviously the

breakpoints largely explain the observed differences in

trends, in particular the large negative step size for

ERA-Interim in December 1991 and the large positive

step size for CFSR in October 1998.

We analyzed the temporal occurrence of changes in

the observing system and changes of the input to as-

similation schemes with observed breakpoints by

screening the data record references given in section 2

and the launch dates of relevant satellites. The results

are summarized in Table 3. It seems that all breakpoints

can be explained with changes in the observing system.

Themaximum step size in CFSR coincides with a start of

assimilation of data from NOAA-15 [see Saha et al.

(2010) for an overview on assimilated radiances]. CFSR

and MERRA both assimilate the low-frequency chan-

nels of AMSU-A but ERA-Interim does not (Rienecker

et al. 2011). The breakpoint in ERA-Interim in late 1991

coincides with a change of assimilating F-10 instead of

F-08 data and has also been observed in Schröder et al.
(2013) using HOAPS, version 3.1, as reference. This

breakpoint is also evident in ERA-Interim precipitation

anomalies, and even the series of downward and upward

breaks in Fig. 2 exhibits similarities to the precipitation

anomalies shown in Dee et al. (2011). The breakpoint in

July 2006 is observed in the anomaly differences of

ERA-Interim and REMSS but not for NVAP-M,

MERRA, and CFSR. The noise level of the anomaly

differences of MERRA, CFSR, and NVAP-M might

obscure the presence of a breakpoint in July 2006.

However, the breakpoint in July 2006 coincides with the

activation of a radar calibration beacon on F-15.

HOAPS and ERA-Interim do not use SSM/I data from

F-15 after July 2006, while REMSS includes beacon-

corrected data from F-15 after July 2006 (Hilburn and

Wentz 2008).

One breakpoint cannot be explained with a change in

the observing system: a breakpoint in REMSS in April

1993. Here an increase in TCWV anomaly difference

between approximately 1992 and 1995 might be mis-

interpreted as breakpoint. During this period the

HOAPS and REMSS data records use data from F-10

and F-11. Observations from both satellites are affected

by orbital drift. In addition, F-10 exhibits strong annual

Earth incidence angle variations (Berg et al. 2013;

Fennig et al. 2013). Different treatment in calibration

and intercalibration between processing at RSS and CM

SAF might explain the observed feature.

The information on the various events is partly taken

from figures published in the literature. It would be

helpful to support data record users and assessments if

data providers publish a list of input data that finds its

way into the final product together with main technical

specifications such as start and stop dates and number of

observations per instrument and month.

b. Regional analysis

We start this analysis by showing results from the in-

tercomparison and comparison of trend estimates to

identify regions of pronounced maxima in differences

among the data records. In Fig. 3 the standard deviation

and the relative standard deviation of differences rela-

tive to the ensemble mean are shown. Both figures

show a contrast between land and ocean, with ocean

values on average being smaller than land values. Re-

gional exceptions are the relatively large values at the

TABLE 2. Results from the estimation of trends over the global

ice-free oceanwithin 608N–608S. The values are sorted in ascending
trend order. Recall that the use of the trend analysis is to locate

breakpoints and it is not claimed that these are the trends occurring

in nature.

Data

record

Trend and uncertainty

[kgm22 (10 yr)21]

Regression and

uncertainty (%K21)

ERA-Interim 20.11 6 0.09 2.9 6 0.5

HOAPS 0.25 6 0.07 7.2 6 0.3

REMSS 0.34 6 0.06 7.6 6 0.3

NVAP-M 0.68 6 0.20 8.4 6 0.7

MERRA 0.75 6 0.09 15.8 6 0.3

CFSR 1.21 6 0.16 24.9 6 0.5
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ITCZ. Relative values are typically larger at higher

latitudes and in elevated terrain, which correlates with

generally small TCWV values. The following regions

exhibit maxima in standard deviation: ITZC, tropical

rain forest over South America and central Africa,

deserts like the Sahara, and mountainous regions in

combination with a general wet environment like the

Andes. Additionally, the following regional maxima in

relative standard deviation are found: Arctic and Ant-

arctic and mountainous regions in the high latitudes.

The local maxima at mountainous regions can to some

extent be explained by the various native resolutions of

the individual data records as well as the by interpolation

and averaging processes. It is further likely that sampling

differences—for example, by cloud or rain screening

(Sohn et al. 2006; Schröder et al. 2013) and different

handlings of surface emissivities—contribute to the ob-

served differences, in particular over tropical land sur-

faces. Such aspects are not further discussed here and are

partly subject to future efforts within G-VAP.

FIG. 2. PMF test applied to anomaly differences rel-

ative to HOAPS for averages over the global ice-free

ocean: (top left) ERA-Interim (ERAINT), (top right)

REMSS, (middle left) MERRA, (middle right) NVAP-M,

and (bottom left) NCEP. Shown are anomaly differences

in black and the PMFfit in red. The timeswhen statistically

significant breakpoints (‘‘shifts’’ in the legend) occur

are also given. Note that scales on the y axis differ

between graphs.
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In addition, the mean absolute difference in trend es-

timates and the number of valid observations are shown

in Fig. 4. In general, the differences are small in high

latitudes and over the ocean and larger over land and in

the ITZC. Occasionally, a few grid values stick out. This

can be explained with the small absolute number of cases

in combination with minima in the number of valid ob-

servations. Most striking are the pronounced maxima

over the following land areas: central Africa, the Sahara,

and (central) South America. Looking at Fig. 1 reveals

that over central Africa trend patterns are generally dif-

ferent and even exhibit opposite trends; over the Sahara

all data records show negative trends, with NVAP-M

having the maximum negative trend covering the entire

Sahara region and Saudi Arabia. The trends from re-

analyses data records agree in sign over South America,

with a dipole of positive and negative values, with

strongest maxima and minima in MERRA. NVAP-M

exhibits the opposite pattern with a similar absolute

magnitude as MERRA. These three distinct regions of

maxima largely overlap in Figs. 3 and 4.

In the following, we try to identify explanations for the

observed maxima. To study this in more detail, we

looked at regional anomaly differences for the areas

with the most pronounced differences: central Africa,

the Sahara, and South America, which are marked by

black/red boxes in Fig. 4. Regional TCWV anomaly

differences relative to ERA-Interim are shown as black

lines in Fig. 5 for data records with valid data over land,

that is, CFSR, MERRA, and NVAP-M. Also shown is

the model fitted by the PMF test (red line) and the time

of significant breakpoints. The range of the y axis is

variable. Note that ERA-Interim is likely affected by

breakpoints as well, which would appear as breakpoints

in all three comparisons. The time, the number, and the

step size of the breakpoints are a function of data record

and also differ from region to region. The maximum

number of breakpoints is found for NVAP-M over

central Africa and the largest step size for NVAP-M

over the Sahara. Comparing the step direction and the

sign of the trends in the regions of central Africa and the

Sahara (see Fig. 1), it can be concluded that breakpoints

are responsible for the observed trend patterns and thus

also for maxima in mean absolute trend differences. An

exception is found for CFSR over the Sahara, where the

step size has opposite sign to the trend. Results for South

America are specific because the step sizes in CFSR and

in NVAP-M have opposite sign to the trend estimates

and MERRA does not exhibit a statistically significant

breakpoint but has the strongest trend in this region. In

view of these results, the difference in sign of the trends,

and the dipole patterns of the trends, a more in-depth

analysis of long-time-series water vapor data records

over central South America is needed.

The time of occurrence and the break size of break-

points as well as changes in the observing systems are

TABLE 3. Dates of observed breakpoints and coincident changes in the observing system or changes of the input to the assimilation

schemes based on the analysis of anomaly differences relative to HOAPS for the global ice-free ocean. When launch dates are provided,

the dates match their consideration in the assimilation schemes within 63 months.

Date

Break size

(kgm22) Dataset Event

Jan 1991 21.05 NVAP-M Launch F-10: Dec 1990

Nov 1991 1.92 NVAP-M Launch F-11: Dec 1991

Stop date F-08: Dec 1991

Dec 1991 20.62 ERA-Interim See Nov 1991

Apr 1993 0.11 REMSS See text

Dec 1994 20.19 ERA-Interim Launch of NOAA-14: Dec 1994, approx stop of assimilation of

NOAA-11 data (see Dee et al. 2011)0.88 NVAP-M

Apr 1997 20.26 ERA-Interim Approx change from assimilation of data from NOAA-12 to

NOAA-11 (see Dee et al. 2011)

Oct 1998 1.31 CFSR Begin of assimilation of NOAA-15 data in Oct 1998 (Chelliah

et al. 2011); approx end of assimilation of

NOAA-11 and NOAA-14 data; change from assimilation

of data from GOES-9 to GOES-10 (Saha et al. 2010)

Nov 1998 0.47 MERRA Start of assimilation of NOAA-15 data (Rienecker et al. 2011)

May 2000 20.10 ERA-Interim Approx start of assimilation of F-15 data and end of NOAA-11 and

NOAA-15 data (see Dee et al. 2011)

Jul 2006 0.24 ERA-Interim Close to end of assimilation of F-15 data, close to change from

GOES-10 to GOES-11, start of Meteosat-5 and Meteosat-8, approx

end of assimilation of NOAA-14 data (see Dee et al. 2011)

0.18 REMSS See text

Sep 2007 0.13 ERA-Interim Approx end of assimilation of NOAA-16 data (see Dee et al. 2011)
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shown as a heat map in Fig. 6. Results are based on

anomalies for ERA-Interim and for anomaly differ-

ences relative to ERA-Interim for CFSR,MERRA, and

NVAP-M for each of the three regions. Most of the

detected breakpoints can be matched to changes in the

observing systems or changes of the input to assimila-

tion schemes. The following breakpoints remain un-

explained: 1) central Africa: September 1992/NVAP-M,

December 2001/MERRA, February 2006/NVAP-M;

and 2) the Sahara: November 1993/NVAP-M. Changes

in the assimilation of ERA-Interim are likely not caus-

ing these breakpoints because they would need to be

evident in all three anomaly differences—this is not the

case here. The supplemental material of Vonder Haar

et al. (2012) includes a figure of the area covered by

instrument that enters NVAP-M. The results for HIRS

exhibit a small decrease in number and a relatively large

change in variability between 1993 and 1994. It seems

that this break is associated with the processing of HIRS

data in NVAP-M. The channel central wavelength for

one of the relevant HIRS water vapor channels was

changed from 8.6mm on NOAA-12 to 12.5mm on

NOAA-11 andNOAA-14. Also, in NVAP-MNOAA-12

sampling actually ended in December 1993. The mix of

these two HIRS versions in 1993–94 implies these are

years of increased uncertainty for NVAP-M. The num-

ber of observations entering the reanalyses is dominated

by satellite observations over the period 1988–2008.

Even though the spatial density is significantly smaller in

ground-based and in situ measurement relative to sat-

ellite data, single stations can have a larger-scale impact

on the product. Bosilovich et al. (2011) observed a sig-

nificant hydrological anomaly in central Africa in late

1995 that could be explained by the impact of a single

station. In particular, the impact was also evident in

specific humidity at 850 hPa. As in Fig. 5 the noise level

is relatively large (see Fig. 15b in Bosilovich et al. 2011).

There results seem to be consistent with the decrease of

TCWV between late 1995 and the early 2000s in the

MERRA anomaly difference time series (Fig. 5). The

FIG. 3. (top) Absolute and (bottom) relative standard devi-

ation between the six long-term data records and the ensemble

mean.

FIG. 4. (top) Mean absolute difference of trend estimates using

the six data records. (bottom) The number of data records, either

4 or 6. Areas marked in black/red rectangles exhibit distinct dif-

ferences and overlap with areas of distinct differences shown in

Fig. 3 (central Africa, the Sahara, and South America). Red cir-

cles mark the position of stations from the HomoRS92 (see text

for details).
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relatively large noise level in combination with a seem-

ing decrease in TCWV might obscure the series of two

breakpoints in late 1998 and late 2001. More efforts are

needed to find reasons for the unexplained breakpoints.

In a first step, other homogeneity tests will be applied to

confirm or disprove these observed breaks. Note that

there are unexplored linkages to global or regional os-

cillations that may possibly manifest themselves as

breakpoints.

It seems that the breakpoints explain not only the dif-

ferences in trend estimates but to some extent and for the

considered regions also themaxima in standard deviation

relative to the ensemble mean. To give a rough estimate

based on the step size given in Fig. 6 for the Sahara and

NVAP-M, we get an artificial standard deviation of more

than 3kgm22 when assuming no trend, white noise ev-

erywhere except at breakpoint, and the difference to the

mean of the anomaly difference, that is, 0 kgm22.

We summarize that the impact on the product quality

of a change in the observing system seems is a function of

space and data record. In certain areas the quality of the

retrievals and assimilation schemes are not significantly

affected, while in other regions (e.g., through the han-

dling of surface properties) the change in the observing

systems manifests itself in the product quality. We con-

clude that breakpoints caused by changes in the observ-

ing system largely explain differences in TCWV and

associated trends.

FIG. 5.As in Fig. 2, but based on anomaly differences for the regions (left) centralAfrica, (center) the Sahara, and (right) SouthAmerica

using ERA-Interim as reference, for (top) CFSR, (middle) MERRA, and (bottom) NVAP-M. Note that scales on the y axis differ

between graphs.
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c. Comparison with HomoRS92

The above results are based on intercomparison results

of data records, which largely rely on satellite observations,

in particular observations from SSM/I. We extend this

intercomparison through a comparison with data from

HomoRS92. For the comparison withHomoRS92, TCWV

values were extracted from the gridded data records for the

grid box closest to the respective station. Exemplary com-

parisons of TCWV anomalies and anomaly differences

relative to HomoRS92 for two GUAN sites, Lindenberg

and Yichang, are shown in Figs. 7 and 8, respectively. For

Lindenberg, all data records show a small bias close to

0kgm22 after 1994. The consistency in anomalies is gen-

erally large, except for generally increased variances prior

to 1994 and a relatively large anomaly in 1992. At Yichang

the discrepancies are larger and show a clear seasonal

dependency, with the largest absolute values in boreal

summer and mean bias values up to 3.7kgm22 for the re-

analysis datasets. An exception in both cases is NVAP-M,

which exhibits larger variance and a larger bias, occasionally

exceeding 5kgm22 for Lindenberg and 20kgm22 for Yi-

chang. The breakpoints in October/November 1998 in

MERRA and CFSR anomaly differences over the global

ice-free ocean (Fig. 5) are not evident in Figs. 7 and 8. Even

the strong breakpoints in NVAP-M over the Sahara and

central Africa in November 1993 and March 1995, re-

spectively, are not evident here. These results again support

the conclusion that the imprint of changes in the observing

systems is a function of region.

For Lindenberg, NVAP-M and all other data records

show a distinct anomaly in summer 1992. This might be

linked to the volcanic eruption of Pinatubo in June 1991.

Robock (2002) shows that the Pinatubo eruption caused

temperature anomalies on global scale: a decrease in low-

tropospheric temperatures in boreal summer in 1992 and

an increase in boreal winter temperatures in 1991/92 and

1992/93. On a global scale, the associated phase shifts in

mean temperature and in TCWVagree, as shown by Soden

et al. (2002). On a more regional scale, the negative

anomaly relative to data from Lindenberg coincides with a

regional maximum in temperature anomalies over central

Europe in summer 1992 (Robock andOppenheimer 2003).

FIG. 6. Occurrences and break size of breakpoints detected by the

PMF test for (top) central Africa, (middle) the Sahara, and (bottom)

South America. Vertical lines indicate a match between changes in

observing systems and detected breakpoints. Anomaly differences

are considered using ERA-Interim as reference. Results for ERA-

Interim are based on the ERA-Interim anomaly time series (labeled

ERAINT_ano).

FIG. 7. (top) TCWV anomaly plots (kgm22) for ERA-Interim,

MERRA, CFSR, NVAP-M, and HomoRS92 for Lindenberg. (bot-

tom) Anomaly differences using HomoRS92 as a reference (data re-

cord minus HomoRS92); the numbers next to the dataset names

indicate bias and RMS, respectively.
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The imprint of the eruption on the anomaly differences

appears to explain the observed features in Fig. 7. This

feature requires further analysis, and a first step can be an

analysis of the correlation between these anomaly differ-

ences and a climate index of volcanic activity.

Distinct anomaly features for the site of Yichang

(Fig. 8, top) include the pronounced negative anomalies

during boreal summer in the years 1997 and 2002 visible

in all datasets. As both years are El Niño years, these

anomalies might be linked to the weakening of the

Asian summermonsoon observed during El Niño events
(e.g., Ju and Slingo 1995).

We also applied the homogeneity test to the time

series of anomaly differences between HomoRS92 and

NVAP-M for a series of stations and analyzed heat

maps similar to Fig. 6 but with stations on the y axis

(not shown). Assuming a consistent degree of homo-

geneity among time series from the different stations

of HomoRS92, one would expect that in the presence

of a breakpoint in NVAP-M this will be evident in a

series of consistently detected breakpoints. We found

that the breakpoints are generally scattered in time and

among stations and, for example, the strong breakpoint

over the Sahara in 1995 is not observed at any of

the considered stations. This might be explained by

breakpoints being a function of region and/or by a lack

of temporal and spatial homogeneity among the data

from the different stations in HomoRS92.

When comparing HomoRS92 station data that fulfil

the sampling criteria (not shown), most regional issues

cannot be observed because the regions of maxima in

standard deviation (see Fig. 3) and maxima in differ-

ences of trend estimates (see Fig. 4) are not covered by a

station from HomoRS92. Establishing a station dedi-

cated to climate monitoring and satellite evaluation in

such regions can be highly beneficial for future evalua-

tions of satellite observations.

5. Conclusions

To our knowledge, a consistent characterization of

the quality and stability of TCWV data records con-

sidering all mature and freely available data records

with at least a 10-yr record has not been completed to

date and is currently the focus of G-VAP. In this paper,

three satellite-based TCWV data records and TCWV

output from three reanalyses were transferred to a

common 28 3 28 longitude–latitude grid and a com-

mon period ranging from January 1988 to December

2008. The corresponding monthly means were inter-

compared to characterize the differences among these

data records on global and regional scales. The com-

parison of trend estimates was used as a tool to identify

issues in the data and to complement the intercom-

parison study and was not meant as an attempt to

characterize climate change. Output from the inter-

comparison and from the trend estimation were ana-

lyzed to identify regions of distinct differences and

differences in breakpoints. Several regions of maxima

in standard deviation and in differences in trend esti-

mates were identified. Homogeneity tests were applied

to anomalies and anomaly differences based on data

from such regions to find explanations for the observed

distinct regional features. For the same reason, com-

parisons with a long-term multistation radiosonde ar-

chive, here HomoRS92, were carried out.

On the basis of consistently applied tools, major dif-

ferences in state-of-the-art CDRs were identified, docu-

mented, and to a large extent explained. This will allow

data record providers in future updates to easily assess

their data record’s improved stability given the results

presented here. Also, the science questions given in the

introduction were largely answered. The results and the

answers are summarized as follows:

d On a global ice-free ocean scale, the trend estimates

among the different data records were found to be

significantly different between the different data re-

cords, with the exception of just two pairs: HOAPS/

REMSS and NVAP-M/MERRA.
d Except for HOAPS and REMSS, all data records

exhibit regression values outside the theoretically

FIG. 8. As in Fig. 7, but for Yichang.
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expected range. This is an indication of issues in long-

term stability.
d Regions with distinct differences in standard deviation

from the ensemble mean largely coincide with the

mean absolute difference of the trend estimates. The

regions with the most pronounced differences are

central Africa, the Sahara, and South America.
d The differences in trend estimates in these regions and

on global ice-free ocean scale were found to be caused

by breakpoints or series of breakpoints. In most cases

these breakpoints coincide temporally with changes in

the observing system.
d The time, sign, and step size of breakpoints are

typically a function of region and data record. In

particular, the breakpoint characteristics are different

between time series from the regional and the global

ice-free ocean scale. The imprint of changes in the

observing systems is a function of region.
d The majority of these breakpoints are not evident when

comparisons with the HomoRS92 data record were car-

ried out. One reason is that areas with distinct differ-

ences in trend estimates are not covered with stations.

Data record users and assessments would benefit from a

list of input data that enters the final product together with

main technical specifications such as start and stop dates

and number of observations per instrument and month.

Lessons learned about regional changes have provided

guidance for future improvements of data records. One

of the major advantages of an effort like G-VAP is to

suggest and encourage improvements to data records

included in the G-VAP analysis. Discussions between

G-VAP participants over the last two years have allowed

participants to receive new perspective on their work.

Analysis of data records by outside, independent scien-

tists willing to provide critical feedback is of great benefit.

For example, the discovery of the regional breakpoints in

NVAP-M over the Sahara by G-VAP members has

prompted further investigation by the NVAP-M team

into the challenges of using infrared data over a surface

with variable emissivity and a variable atmosphere that is

often impacted by dust storms. These factors will be

addressed in future production efforts. Our results gen-

erally confirm the conclusions in Rienecker et al. (2011,

p. 3643) that the differentiation between the impacts from

changes of the observing system and climate variations

‘‘pose perhaps the greatest challenge for the next gener-

ation of reanalyses.’’ Here this conclusion is extended

from reanalyses to state-of-the-art satellite-based data

records. A careful recalibration and intercalibration of

raw data records, retrieval harmonization/improvements,

and refined assimilation schemes are key elements to in-

crease the level of homogeneity and stability. A sound

uncertainty estimation is required as well, and such efforts

should be carried out on a regular basis in conjunction

with a reassessment of the achieved change in quality.

We emphasize the regional aspect of the impact of

changes of the observing system and its relevance for the

emerging need of regional climate analysis. It is impor-

tant to verify the stability of a data record on global and

all regional scales. The latter is a challenge because of

missing reference observations with sufficient global and

temporal coverage that at the same time are not affected

by changes in the observing system.

Acknowledgments. M. Lockhoff and M. Schröder ac-
knowledge the financial support by the EUMETSAT

member states through CM SAF. J. Forsythe, H. Cronk,

and T. Vonder Haar acknowledge the support of the

NOAA NEAT program under Fuzhong Weng. The

authors are grateful to ECMWF, NASA, NCEP, and

REMSS for producing and making available the var-

ious data records. J. Schulz, L. Shi, B. Bojkov, F. Fell,

C. Kummerow, and R. Roca are acknowledged for

initiating G-VAP and for fruitful discussions. Comments

from Michael Bosilovich and three anonymous reviewers

are acknowledged. J. Trentmann supported the imple-

mentation of the homogeneity tool developedbyX.Wang.

We acknowledge the participants of the 3rd G-VAP

workshop at CSU, in particular B. Weatherhead, for ini-

tiating the publication of this work.

APPENDIX

Acronyms

This appendix gives definitions for the acronyms that

are used in this paper.

AIRS Atmospheric Infrared Sounder

AVHRR Advanced Very High Resolution

Radiometer

AMSR-E Advanced Microwave Scanning Radi-

ometer for EOS

CDR Climate data record

CFSR Climate Forecast System Reanalysis

CM SAF Satellite Application Facility on Cli-

mate Monitoring

DMSP DefenseMeteorological Satellite Program

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA-Interim ECMWF interim reanalysis

ESDR Earth system data record

EUMETSAT European Organisation for Exploitation

of Meteorological Satellites

GCOS Global Climate Observing System

GDAP GEWEX Data and Assessments Panel
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GEOS Goddard Earth Observing System

GFS Global Forecast System

GUAN GCOS Upper-Air Network

GSI Gridpoint Statistical Interpolation anal-

ysis system

GTOPO30 Global 30 arc s elevation dataset

G-VAP GEWEX water vapor assessment

HIRS High Resolution Infrared Radiation

Sounder

HOAPS Hamburg Ocean Atmosphere Param-

eters and Fluxes from Satellite Data

IAU Incremental analysis updates

IFS Integrated Forecast System

IGRA Integrated Global Radiosonde Archive

IPW Integrated precipitable water

ITCZ Intertropical convergence zone

IWV Integrated water vapor

MEaSUREs Making Earth Science Data Records

for Use in Research Environments

MPI-M Max Planck Institute for Meteorology

MERRA Modern-Era Retrospective Analysis

for Research and Applications

NASA National Aeronautics and Space

Administration

NCEP National Centers for Environmental

Prediction

NOAA National Oceanic and Atmospheric

Administration

NVAP NASA’s Water Vapor Project

NVAP-M NASA’sWaterVaporProject–MEaSUREs

PMF Penalized maximal F (test)

PWAT Precipitable water

REMSS Remote Sensing Systems

SSMIS Special Sensor Microwave Imager/

Sounder

SSM/I Special Sensor Microwave Imager

SST Sea surface temperature

TCWV Total column water vapor

TPW Total precipitable water vapor

UCAR University Corporation for Atmospheric

Research

USGS U.S. Geological Survey
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