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Abstract we use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature
and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A
(Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate
the total sampling bias into temporal and instrumental components. The temporal component is caused

by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental
component is caused by scenes that prevent successful retrievals. The temporal sampling biases are
generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such
as the boundary layer, where the temporal sampling biases of temperature can be + 2 K and water vapor
can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases
and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and
tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors
such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts
where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally
and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water
vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets.
The measurement differences are often larger than the sampling biases and have longitudinal variations.

1. Introduction

Earth observations by satellite are becoming more accurate, more abundant, and easier to access and

can serve as valuable resources for evaluating climate models. The AIRS/AMSU-A (Atmospheric Infrared
Sounder/Advanced Microwave Sounding Unit-A [Aumann et al., 2003]) suite of instruments has decadal
observations of atmospheric temperature and water vapor which are included in the Obs4MIPs (Observa-
tions for Model Intercomparison Projects) program [e.g., Tian et al., 2013]. However, one of the greatest chal-
lenges of using satellite observations from Low Earth Orbit (LEO) to evaluate climate models is to account
for differences in the sampling. Climate models sample natural variability on a regular grid in time and space
while LEO satellite observations do not. Since AIRS is on the Aqua spacecraft in a Sun-synchronous LEO with
a limited swath width, its sampling of the diurnal cycle and synoptic events is incomplete. Moreover, since
the AIRS is an infrared instrument, its sampling is affected by clouds, aerosols, coastlines, and other factors
that affect its ability to perform successful retrievals. These sampling differences can affect comparisons with
climate models [e.g., Tian et al., 2013]. Therefore, we consider two components to the total sampling bias of
an AIRS/AMSU-A climatology:

1. The temporal component is caused by the Aqua spacecraft’s Sun-synchronous low Earth orbit and the
limited swath width of the AIRS/AMSU-A instruments that results in undersampling temporal (especially
diurnal) and spatial variations.

2. The instrumental component caused by the quality control imposed in regions where the AIRS/AMSU-A
instrument suite or algorithm is not able to successfully perform a retrieval.

Numerous authors [e.g., Guan et al., 2013; Kirk-Davidoff et al., 2005; Lin et al., 2002; Leroy, 2001; Fowler et al.,
2000; Bell and Kundu, 1996; North et al., 1993] have discussed temporal sampling biases (What we call
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temporal sampling biases are sometimes referred to as orbital sampling biases or just sampling biases when
other effects can be neglected.). However, it is also important to understand the instrumental sampling
biases when an instrument or algorithm is not sensitive to certain atmospheric states. Tian et al. [2013] show
that sampling data from MERRA (Modern Era Retrospective-Analysis for Research Applications [Rienecker

et al., 2011]), a product of GEOS-5 (Goddard Earth Observing System Model, Version 5) Data Assimilation
System that includes model and assimilation data, with different cloud amounts can alter the yearly aver-
ages of temperature and water vapor. Tian et al. [2013] have also shown that the differences between
climatological means of AIRS/AMSU-A and MERRA specific humidity are mainly located in deep convec-
tive cloudy regions such as the ITCZ (Intertropical Convergence Zone), the SPCZ (South Pacific convergence
zone), and midlatitude storm tracks and speculate that these regions may contain a significant clear sky
sampling bias. Their speculations are consistent with other studies that have shown differences between
infrared and microwave observations which have different sampling rates [e.g., Fetzer et al., 2006; John et al.,
2011]. Itis important to understand these biases when creating a climatology from this type of observation
to evaluate climate models since the models have very different sampling. We use MERRA temperature and
water vapor data to estimate the sampling bias of a climatology derived from AIRS/AMSU-A observations
by examining differences between MERRA climatologies with different sampling assuming that the MERRA
data correctly samples the atmospheric state.

We derive sampling bias estimates for AIRS/AMSU-A, however, any Earth-observing instrument in a
Sun-synchronous low Earth orbit with a 1:30 A.M./P.M. equator crossing time would have similar tem-
poral biases that may be larger or smaller depending upon the swath width. Also, similar instrumental
sampling biases likely exist for other infrared instruments (e.g., The Moderate Resolution Imaging Spectro-
radiometer (MODIS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared
Sounder (CrlS)).

The AIRS/AMSU-A and MERRA data sets are both being used to evaluate climate models [e.g., Tian et al.,
2013 and Fasullo and Trenberth, 2012]; therefore, it is important to understand how these data sets differ
independently of sampling. For example, Susskind et al. [2006] show a slight decrease in the accuracy of
AIRS/AMSU-A retrievals with increasing cloud cover. We estimate the residual measurement errors by cal-
culating the differences between temperature and water vapor climatologies created from AIRS/AMSU-A
observational data and from similarly sampled MERRA data. This allows separation of the differences
due to sampling from differences when AIRS/AMSU-A is able to obtain observations. The differences
between AIRS/AMSU-A temperature and water vapor climatologies and the similarly sampled MERRA cli-
matologies serve as a combined measurement uncertainty in the regions where AIRS/AMSU-A is able to
obtain observations.

Section 2 describes how we use AIRS/AMSU-A and MERRA data to estimate the sampling biases of
AIRS/AMSU-A temperature and water vapor climatologies and the combined measurement uncertain-
ties of AIRS/AMSU-A and MERRA climatologies. Section 3 describes our estimates based on MERRA of the
total, temporal, and instrumental components to the sampling biases of AIRS/AMSU-A temperature and
water vapor climatologies. Section 4 presents the combined measurement uncertainties by comparing
AIRS/AMSU-A and MERRA data with similar sampling to assess how well the satellite observations and
reanalysis temperature and water vapor agree independent of sampling effects. Section 5 presents several
limitations of our study. Section 6 summarizes our findings.

2, Data and Analysis

2.1. AIRS/AMSU-A Observations and Climatology

The AIRS/AMSU-A suite of instruments observes Earth from aboard the Aqua spacecraft at an altitude of
~705 km in a near-polar Sun-synchronous orbit with an inclination of 98.2° [Parkinson, 2003]. The ascending
nodes of the orbit (i.e., when the spacecraft is moving toward the north) correspond to daytime observa-
tions (~1:30 PM. local time) near the equator and the descending nodes of the orbit (when the spacecraft
is moving toward the south) correspond to nighttime observations (~1:30 A.M. local time) near the equa-
tor. The AIRS/AMSU-A instruments scan + 49° about nadir with a swath width of ~1650 km [Aumann et al.,
2003]. Because of the wide swath, the local time of data collection along the equator can be between
12:50-2:10 PM. and 12:50-2:10 A.M.for the ascending and descending parts of the orbit, respectively. The
time range of data collection broadens closer to the poles so that the 98.8 minute orbit can sample the poles
14 or 15 times per day [Parkinson, 2003]. The instruments have 2378 channels in the wavelength range from
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3.75t0 15.4 pm (4/54 ~1200) and 15 channels from 23.8 to 89 GHz. The AIRS/AMSU-A science team retrieval
algorithm uses both AIRS and AMSU-A data to infer temperature and water vapor profiles of the atmosphere
[Susskind et al., 2011, 2003].

We use level 2 data from version 5 of the AIRS/AMSU-A science team algorithm to create 9 year temperature
and water vapor climatologies. We generate the AIRS/AMSU-A climatologies by calculating the arithmetic
mean of the AIRS/AMSU-A level 2 temperature and water vapor estimates from the AIRX2RET product over 9
years of observations on a 1° X 1° grid in a manner analogous to the version 5 monthly mean AIRS/AMSU-A
level 3 data [Olsen et al., 2007]. Specifically, we create the AIRS/AMSU-A temperature and water vapor
climatologies as follows:

1. We average together AIRS/AMSU-A level 2 monthly means of temperature and water vapor profile data
on a 1°x1° grid for each grid point over a 9 year period from September 2002 to August 2011. We average
data from both the ascending and descending orbital nodes with equal weight given to each node rather
than separately averaging the nodes as is done for the AIRS/AMSU-A level 3 standard product.

2. We include all data for which the retrieval is either “good” or “best” according to the AIRS/AMSU-A quality
control without regard as to whether it is over land, ocean, or coastline. This gives us a slightly higher yield
than the standard version 5 AIRS/AMSU-A level 3 which defines each grid point as either land or ocean
and only includes observations of that type;

3. We correct an error in the version 5 level 3 code that sometimes allows nonphysical temperatures near
the surface. Although it may affect all near-surface temperature measurements, it is most noticeable near
steep topography such as the Andes and the Tibetan Plateau where the AIRS version 5 level 3 product
sometimes reports unrealistically high air temperatures.

2.2. MERRA Data

We create the 9 year MERRA climatologies by averaging temperature and water vapor profile data from the
MERRA Incremental Analysis Update 3-D assimilated state (“inst3_3d_asm_Cp” also known as “MAI3CPASM")
produced from version 5 of the GEOS Data Assimilation System that assimilates numerous types of observa-
tions (e.g., radiosonde, ground station, and satellite) and includes model calculations. The MAI3CPASM data
are provided on a 1.25° x 1.25° grid with 42 vertical levels in pressure and sampled every 3 h in time. Since
the MERRA data have a vertical grid point for each of the AIRS/AMSU-A standard temperature levels, we use
the MERRA temperature from the same level as the AIRS/AMSU-A observation. Since the MERRA water vapor
is provided as a level specific humidity we convert it to a layer mixing ratio to match the AIRS/AMSU-A data
by first converting the MERRA specific humidity to a mixing ratio and then interpolating the MERRA value
to the geometric mean pressure of the AIRS/AMSU-A layer. Although the interpolation may produce a bias,
it would be canceled out when calculating the difference between climatologies created from MERRA both
of which are interpolated in the same way. However, it may produce biases in our comparisons of similarly
sampled MERRA and AIRS/AMSU-A climatologies.

2.3. Methodology for Calculating the Sampling Bias and Uncertainty Estimates

We use the differences between MERRA temperature and water vapor climatologies with different sampling
to estimate the sampling biases of an AIRS/AMSU-A climatology. The MERRA climatologies for this analysis
are created by sampling MERRA data in three different ways:

1. A MERRA sampled like AIRS/AMSU-A (hereafter, MSA) climatology is created with MERRA data sampled
like AIRS/AMSU-A in space and time but without applying the AIRS quality control. We resample the
MERRA data to be like AIRS/AMSU-A by using the MERRA data nearest in time (UTC) and space (longitude
and latitude) to each AIRS/AMSU-A level 2 observation and then average the data ontoa 1° x 1° grid
like that of the AIRS/AMSU-A level 3 product with the few differences described in section 2.1. Since the
MERRA grid has a coarser spatial resolution than the AIRS/AMSU-A level 2 observations, we allow MERRA
profiles to be distributed over multiple AIRS/AMSU-A level 2 locations but the AIRS coordinates are used
when averaging onto the 1° x 1° grid.

2. A MERRA sampled like AIRS/AMSU-A with Quality Control (hereafter, MSAQC) climatology is created with
MERRA data sampled like AIRS/AMSU-A in space and time including AIRS/AMSU-A quality control. This
climatology is similar to the MSA climatology; however, the data is selected for gridding based on the AIRS
level 2 quality flags in addition to the space and time constraints. We use the same quality criteria as used
for generating the AIRS/AMSU-A level 3 standard product (i.e., we only include data flagged as “best” or
“good"”). Specifically, when creating the temperature climatology we only include temperature estimates
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Figure 1. (left) The number of attempted AIRS temperature retrievals at 850 hPa that are included in the 9 year
average climatology. (right) The fraction of attempted retrievals that were accepted by the AIRS/AMSU-A quality
control algorithm.

for pressures less than or equal to (i.e., above in altitude) the maximum value of the pressure for which
the temperature is of the “best” or “good” quality, Pressure Good (PGood). When creating the water vapor
climatology we only include water vapor estimates for which there is a valid AIRS/AMSU-A measurement
and for which the overall quality flag for water vapor, Quality H,O (Qual_H20) is 0 or 1, meaning the data
are of the “best” or “good” quality.

3. A MERRA Monthly Mean (hereafter, MMM) climatology is created over the same 9 year epoch as
AIRS/AMSU-A but from the MERRA “MAIMCPASM” monthly product that includes the full diurnal variation
sampled every 3 h at every grid point. Since this climatology is not sampled like AIRS, we just average the
temperature and water vapor data from the MERRA monthly mean files over the same 9 year time period
after regridding the data to a 1° x 1° grid. We also refer to this as the MERRA climatology sampled like a
climate model.

Figure 1 illustrates the sampling of the 850 hPa temperature in the MSA and MSAQC climatologies. The sam-
pling of the MSA climatology is a function of the orbit, the scan pattern, and the topography. The scans
from adjacent orbits overlap closer to the poles, therefore the “counts” (i.e., number of attempted retrievals)
shown in Figure 1 (left) increase near the poles. However, since the orbit is near-polar (rather than polar), the
peak in the number of counts is slightly offset from the poles. The number of counts at 850 hPa (Figure 1)
also decreases in regions of high terrain where the surface pressure is less than 850 hPa, and thus, the atmo-
sphere can never be sampled at this level. In addition to the orbit, the scan pattern, and the topography,
the sampling of the MSAQC climatology is also a function of the quality control. We emphasize how quality
control influences sampling in Figure 1 (right) by showing the fraction of the number of accepted retrievals
over the number of attempted retrievals for each grid cell. Since this ratio has a similar spatial pattern to the
distribution of cloud amount [cf. Rossow and Schiffer, 1991, Plate 1], we infer that much of the instrumental
sampling bias is caused by clouds. This is consistent with the conclusion from Tian et al. [2013]. However, in
section 4 we show that surface emissivity, temperature, and Sun glint may also affect instrumental sampling
in some regions.

We use differences between the MERRA climatologies described above to estimate the total, temporal,

and instrumental sampling bias components of AIRS/AMSU-A temperature and water vapor climatologies.
The differences between the MSAQC and the MMM climatologies provide estimates of the total sampling
biases of an AIRS/AMSU-A climatology. The differences between the MSA and MMM climatologies provide
estimates of the temporal sampling biases of an
AIRS/AMSU-A climatology. The differences between the
MSAQC and the MSA climatologies provide estimates of the
instrumental sampling biases of an AIRS/AMSU-A climatol-
ogy. The climatological differences we use for calculating the

Table 1. Climatology Differences Used for
Sampling Bias Estimates

Bias Component  Climatology Difference?

Total MSAQC-MMM components to the sampling bias are summarized in Table 1.

Temporal MSA-MMM

Instrumental MSAQC-MSA Since the MMM climatology is generated from the 3-hourly
3Abbreviations: MSA = MERRA sampled MERRA files, it is already sensitive to the full diurnal cycle

like AIRS/AMSU-A; MSAQC = MERRA sam- (insofar as MERRA is sensitive to diurnal variability). There-

pled like AIRS/AMSU-A with Quality Control;

fore, we average the MSA and MSAQC climatologies over the
MMM = MERRA Monthly Mean.

ascending (daytime) and descending (nighttime) nodes of
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the AIRS/AMSU-A orbit with equal weights given to each node for comparisons with the MMM climatology
to crudely estimate the full diurnal cycle.

The quality flags used to generate the MSAQC climatologies can be influenced by a myriad of atmospheric
phenomena that vary seasonally and diurnally. Therefore, we examine the seasonal and diurnal variations
of the instrumental sampling bias by calculating the differences between MSAQC and MSA climatologies
independently for the ascending (daytime) and descending (nighttime) parts of the orbit and for each of
four seasons (e.g., December, January, and February, March, April, and May, etc.), in addition to the yearly
average climatologies. We refer to the orbitally and seasonally averaged versions of the climatologies with
orbital and seasonal designations (e.g., “MSAQC-A-DJF” is the “MSAQC” climatology for the ascending “A”
part of the orbit during the December, January, and February “DJF” seasons) to distinguish them from the
versions that are averaged over the ascending and descending parts of the orbit for all seasons.

We estimate the combined measurement uncertainties of AIRS/AMSU-A and MERRA in regions where
AIRS/AMSU-A is able to obtain observations by calculating the difference between AIRS/AMSU-A and
MSAQC climatologies of temperature and water vapor. However, further validation studies of the regions
where significant differences are noted is necessary to determine whether the AIRS/AMSU-A or the MERRA
estimates are more accurate. Thus, we refer to these differences as combined measurement uncertainties of
AIRS/AMSU-A and MERRA climatologies rather than biases.

2.4. Significance Testing

We estimate the significance of the differences between the climatologies using a paired Student’s t test.
Calculating the standard deviation of the difference between paired months reduces the influence nonnor-
mal seasonal and interannual variations have on our significance estimates. The hypothesis tested is that the
analyzed differences are null at the 95% confidence level. When this hypothesis is rejected, the differences
are significant at the 95% confidence level. We only show differences that exceed the 95% confidence level
in the climatological difference maps.

3. Sampling Biases

We use the differences between MSAQC, MSA, and MMM temperature and water vapor climatologies as
shown in Table 1 to estimate the total (section 3.1), temporal (section 3.2), and instrumental (section 3.3)
components to the sampling bias of AIRS/AMSU-A temperature and water vapor climatologies.

3.1. Total Sampling Bias

Figure 2 shows our estimate based on MERRA of the yearly average total temperature and water vapor
sampling biases of an AIRS/AMSU-A climatology for the standard levels/layers up to 300 hPa. Although
there are seasonal variations in the total sampling bias, they are mainly due to instrumental effects which
we examine in section 3.3. The striking similarity of Figure 2 and Tian et al. [2013, Figures 7, 9, and 10],
which includes both sampling and measurement differences, indicates that in many regions the differences
between AIRS/AMSU-A and MERRA climatologies from Tian et al. [2013] can be attributed to AIRS/AMSU-A
sampling biases.

The sampling biases tend to be both cold (up to 2 K) and dry (up to 30%) throughout the troposphere over
the midlatitude storm tracks (Figure 2). The sampling biases of the AIRS/AMSU-A water vapor also tend to
be dry (up to 30%) over the tropical convective cloudy regions, such as the ITCZ, SPCZ, western Pacific warm
pool, equatorial south America, and south Atlantic convergence zone. However, the sampling bias is wet
over the ocean off the west coast of South America and southern Africa between 850 and 500 hPa. These
findings are consistent with Fetzer et al. [2006] who observe that an AIRS/AMSU-A total water vapor clima-
tology has a dry bias over storm tracks and a wet bias over stratus regions compared to a climatology from
AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) which is less sensitive

to clouds.

Over the Sahara, Sahel, and the Arabian Peninsula there is a cold bias at 850 hPa and a wet bias that extends
vertically throughout the troposphere (Figure 2). Figure 2 also shows that the boundary layer temperature
has both warm and cold biases that are mainly located in the temperate zones and the arctic. The boundary
layer water vapor over the ocean in the tropics and subtropics has a wet bias that is largest close to some
coastlines and a dry bias at higher latitudes.
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Figure 2. Differences between MERRA sampled Like AIRS/AMSU-A with Quality Control minus MERRA Monthly Mean
climatologies (i.e., MSAQC-MMM) of temperature in Kelvins, water vapor in g/kg, and water vapor percent difference are
displayed from left to right. This is an estimate of the total sampling bias of an AIRS/AMSU-A climatology that includes

both the

temporal and instrumental components to the sampling bias.
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Table 2. Total Sampling Bias Estimates

Region Bias Reason?
Troposphere above temperate zones up to 2 K cold and > 20% dry (larger over oceans) |
Troposphere above 850 hPa in the ITCZ and SPCZ up to 20% dry |
Boundary layer water vapor above tropical and subtropical ocean up to 10% wet (larger close to continents) T
Boundary layer Temperature +2K Tand |
Sahara, Sahel, and the Arabian Peninsula at 850 hPa up to 2 K cold |
Troposphere above the Sahara, Sahel, and the Arabian Peninsula up to 15% Wet |
aT = Temporal, | = Instrumental.

We summarize the total sampling biases in Table 2 and indicate whether they are caused by temporal and/or
instrumental effects which we examine further in sections 3.2 and 3.3. Except for the boundary layer, where
both temporal and instrumental sampling biases are present, the total sampling biases are mainly due to
instrumental effects.

3.2. Temporal Sampling Bias

Figure 3 shows our estimate based on MERRA of the yearly average temperature and water vapor temporal
sampling biases of AIRS/AIRS-A climatologies for two levels/layers. A figure with additional levels/layers up
to 300 hPa is available in Figure S1 in the supporting information.

As Fowler et al. [2000] point out, the largest temporal sampling biases are in regions with a large amplitude
in the diurnal cycle. For example, the temporal sampling bias of temperature can be +2 Kin the extratropical
boundary layer (Figure 3) because of the large amplitude of the diurnal variation. The water vapor in the
tropical and temperate boundary layer over the ocean has a wet temporal sampling bias that can be up to
10% near some coastlines (Figure 3). Similar wet temporal sampling biases in the boundary layer over North
America and Northern Eurasia are likely associated with lakes.

The water vapor has both dry and wet temporal sampling biases in the tropical free troposphere (e.g., the
600-500 hPa layer in Figure 3). The largest bias is over the tropical western pacific where Tian et al. [2004]
show a large amplitude in the diurnal cycle of clouds and upper tropospheric humidity. The direction of the
bias likely depends upon whether the AIRS/AMSU-A 1:30 A.M./P.M. equator crossing time captures a peak or
trough in the diurnal cycle, therefore other regions show slight wet biases. Nevertheless, both the dry and
wet temporal sampling biases in the free troposphere are just a few percent.

We summarize the temporal sampling biases in Table 3. Although the temporal sampling biases are gen-
erally small, they are significant and contribute to the observed differences observed when comparing
gridded AIRS/AMSU-A data to climate models [e.g., Tian et al., 2013].
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Figure 3. Differences between MERRA sampled Like AIRS/AMSU-A and MERRA Monthly Mean climatologies (i.e., MSA-MMM) of temperature in Kelvins, water
vapor in g/kg, and water vapor percent difference are displayed from left to right. This is an estimate of just the temporal component to the sampling bias of an
AIRS/AMSU-A climatology.
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Table 3. Temporal Sampling Bias Estimates

Region Bias

Over some extratropical boundary layer regions +2K

Boundary layer above tropical and temperate oceans and lakes  up to 10% wet (larger close to coastlines)
Tropical free troposphere a few percent wet or dry

The boundary layer temporal sampling biases in Figure 3 look different than those shown in Figure 2 from
Guan et al. [2013] for several reasons. The main reason for the differences is likely that Guan et al. [2013] only
account for the AIRS/AMSU-A orbital track and swath width but not the surface pressure of the observa-
tions. The figures from Guan et al. [2013] show that the largest temporal sampling biases of temperature and
water vapor at 1000 hPa are over land, however, 1000 hPa is below the land surface of the Earth for much
of the Earth. Also, the temporal sampling bias estimates shown by Guan et al. [2013] are based on 6-hourly
CFSR (National Centers for Environmental Prediction Climate Forecast System Reanalysis) data while ours are
based on 3-hourly MERRA data which Guan et al. [2013] show differs from that of CFSR in Taylor diagrams.
Finally, Guan et al. [2013] do not account for the increase in distance between AIRS/AMSU-A footprints at
larger scan angles as we do by gridding the actual AIRS Level 2 footprint locations. Nevertheless, our finding
that the orbitally induced temporal sampling biases are small is consistent with Guan et al. [2013].

3.3. Instrumental Sampling Bias

Figure 4 displays our estimates based on MERRA of the instrumental sampling biases of AIRS/AMSU-A
temperature and water vapor climatologies. The most extensive instrumental sampling biases of both tem-
perature and water vapor (Figure 4) are throughout the troposphere over the midlatitude storm tracks
where the instrumental sampling biases can be up to 2 K cold and more than 20% dry. Both the cold and
dry biases are larger over ocean. The water vapor also has a dry sampling bias in the free troposphere above
850 hPa over the tropical convective cloudy regions such as the ITCZ and SPCZ, the western Pacific warm
pool, equatorial South America, and the South Atlantic Convergence Zone. Since these biases are in regions
with a smaller fraction of accepted retrievals (see Figure 1) and have a spatial distribution similar to that of
clouds, the clouds are likely causing the more warm and humid data to be rejected by the quality control.
This is consistent with Tian et al. [2013] who show that the large MERRA-AIRS/AMSU-A specific humidity dif-
ferences are mainly located in the deep convective cloudy regions where the sampling of AIRS/AMSU-A is
very low.

We also observe seasonal and diurnal differences within some regions that have a cloud-induced sampling
bias. For example, Figure 5 shows that the oceanic boundary layer at 1000 hPa in the northern temperate
zones has a ~1 K warm bias during the June, July, and August (JJA) season and a ~1 K cold bias during the
December, January, and February (DJF) season. Figures S2 and S3 in the supporting information show that
the warm bias during the JJA season is larger during the ascending (daytime) part of the orbit while the cold
bias during the DJF season is about the same magnitude for both the ascending (daytime) and descend-
ing (nighttime) parts of the orbit. These opposite seasonally dependent sampling biases cancel out and are
not seen at 1000 hPa in the yearly average instrumental sampling bias estimates shown in Figure 4. Figure 5
also shows a larger seasonally dependent instrumental sampling bias in the boundary layer over northwest-
ern Eurasia that is ~2 K warm during the JJA season for the ascending (daytime) part of the orbit. The same
region has a ~2 K cold instrumental sampling bias during the DJF season for both the ascending (daytime)
and descending (nighttime) parts of the orbit. At higher altitudes in the troposphere the warm biases over
the northern temperate oceans and northwestern Eurasia during the JJA season are smaller or not present,
while Figures S2 and S3 in the supporting information show that these regions have a cold bias in the tro-
posphere during other seasons. These biases are likely modulated by the seasonal cycle of the storm tracks
since the warm bias occurs during the minimum of storm track variability and the cold bias occurs during
the maximum [e.g., Wettstein and Wallace, 2010].

Figure 5 also shows a 2 K cold seasonally dependent instrumental sampling bias off the coast of Antarctica
during the JJA season that is not present during the DJF season and a similar cold instrumental sampling
bias in the Arctic Ocean during the DJF season that is not present during the JJA season. Unlike most other
seasonally dependent instrumental sampling biases that are larger when there is a seasonal decrease in the
fraction of accepted retrievals, these cold biases are larger when there is a seasonal increase in the fraction
of accepted retrievals (not shown). These biases are likely an artifact of how the AIRS/AMSU-A quality control
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Figure 4. Differences between MERRA sampled Like AIRS/AMSU-A with Quality Control and MERRA sampled Like
AIRS/AMSU-A climatologies (i.e., MSAQC-MSA) are shown for air temperature in Kelvins, water vapor mixing ratio in
g/kg, and percent difference of water vapor mixing ratio from left to right. This is an estimate of just the instrumental
component to the sampling bias of an AIRS/AMSU-A climatology.
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Figure 5. Differences between the MERRA sampled Like AIRS/AMSU-A with quality control-MERRA sampled Like
AIRS/AMSU-A climatologies for the ascending part of the orbit for DJF and JJA (MSAQC-A-DJF-MSA-A-DJF and
MSAQC-A-JJA-MSA-A-JJA) are shown at for 1000 hPa temperature in Kelvins).

responds to ice-covered surfaces such that during the cold season, although more retrievals are accepted,
they tend to be colder than average.

Over the Sahara, Sahel, and the Arabian Peninsula the AIRS/AMSU-A quality control creates a > 1 K cold
instrumental sampling bias at 925 and 850 hPa and a wet instrumental sampling bias up to 20% wet that
affects all layers of the troposphere (Figure 4). This cold/wet instrumental sampling bias has a strong sea-
sonal dependence such that the largest biases are over the Sahara, Sahel, and the Arabian Peninsula during
the March, April, and May (MAM) and JJA seasons and they are more prominent during the ascending (day-
time) part of the orbit. Figures S2, S3, S4, and S5 in the supporting information show similar seasonally
dependent cold/wet sampling biases over the western part of Australia during the September, October, and
November (SON) and DJF seasons. However, over Australia a nighttime dry instrumental sampling bias can-
cels out the daytime wet bias so that neither are seen in the yearly and diurnally averaged bias estimates in
Figure 4. We note that the fraction of accepted retrievals (not shown) in these regions is significantly lower
during the daytime observations for the affected seasons than at night or during other seasons. Since there
are not many clouds over deserts, these differences may be due to surface emissivity, high surface tem-
peratures, or aerosols affecting the quality flagging such that dry retrievals are rejected throughout the
troposphere and warm retrievals are rejected at 925 and 850 hPa.

Smaller seasonal variations in the sampling biases than those described above are correlated with seasonal
changes in the number of accepted retrievals. Because of seasonal and diurnal canceling errors these biases
can appear smaller in the yearly average. For example, the yearly average sampling biases in Figure 4 shows
both temperature and water vapor instrumental sampling biases over the tropical ocean west of South
America. At 1000 and 925 hPa the temperature bias appears as a ~0.5 K warm bias while from 850 to 600 hPa
it appears as a ~0.5 K cold bias. The troposphere in this region has a consistent wet bias from 925 to 500 hPa
that is largest (~10%) in the layer from 850 to 700 hPa. Figures S4 and S5 in the supporting information show
that the wet bias off the west coast of South America has a seasonal and diurnal dependence such that it

is largest (15% wet) in the layer from 850 to 700 hPa during the SON season at night. The peak in this bias
corresponds with a decrease in the ratio of accepted retrievals (not shown).

We summarize the instrumental sampling biases in Table 4. As mentioned earlier, except for the boundary
layer, where both temporal and instrumental sampling biases are present, instrumental sampling biases are
the main contributor to the total sampling bias.

4. Measurement Uncertainties (AIRS/AMSU-A-MERRA With the Same Sampling)

Tian et al. [2013] show that side-by-side comparisons of yearly climatological means of AIRS/AMSU-A and
MERRA temperature and water vapor have good correspondence with both data sets showing similar spa-
tial patterns even without accounting for differences in sampling. They also use the differences between
the AIRS/AMSU-A and MERRA climatologies to estimate a combined uncertainty that includes both mea-
surement and sampling uncertainties. In this section we calculate a combined uncertainty estimate for
AIRS/AMSU-A and MERRA that only includes measurement differences.
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Table 4. Instrumental Sampling Bias Estimates

Region

Bias

Troposphere above temperate zones

Up to 2 K cold and more than 20% dry; more prominent over ocean.

Troposphere above 850 hPa over the ITCZ and SPCZ Up to 20% dry

Over northern hemispheric temperate oceans ~30-60° N.

Over northwestern Eurasia.

Over the Arctic and off the western coast of Antarctica.

Up to 1 K warm during JJA and 1 K cold during other seasons. The warm
bias is more prominent in the daytime than at nighttime and largest in the
boundary layer. The cold bias is larger at higher altitudes.
2 K warm during JJA and 2 K cold during DJF. The warm bias is more prominent
in the daytime than at night.
Up to 2 K cold (JJA in the Southern Hemisphere; DJF in the Northern Hemisphere).
The bias is largest in the boundary layer.

Over the Sahara, Sahel, the Arabian Peninsula, and Australia 1 K cold. More prominent during MAM and JJA in the Northern Hemisphere and SON

at 925 and 850 hPa. Only present in the daytime.
Entire troposphere over the Sahara, Sahel, the Arabian
Peninsula, and Australia. Not seen in the yearly and diurnally

and DJF in the southern hemisphere.
20% wet. More prominent during the daytime for the MAM and JJA seasons in the
northern hemisphere and SON and DJF in the Southern Hemisphere.

averaged differences above 700 hPa over Australia because
of a nighttime dry bias.

Troposphere over Australia during the nighttime.

A few to more than 20% dry. Largest in the free troposphere above 700 hPa.

Troposphere over the ocean off the west coast of South America. Up to 15% wet. A 0.5 K warm bias at 1000 and 925 hPa and a 0.5 K cold bias

at 850-600 hPa. Largest at night during the SON season in the from 850 to 700 hPa.

Pressure [hPa]

Figure 6 shows zonal plots of the average difference between AIRS/AMSU-A and MERRA climatologies
(AIRS/AMSU-A-MSAQC) of temperature and water vapor with similar sampling. The zonal difference plots
in Figure 6 look similar to the inverse of the MERRA-AIRS/AMSU-A zonal difference plots shown by Tian et al.
[2013, Figures 2 and 3]. However, Figure 6 of this paper shows smaller differences of both temperature and
water vapor in the free troposphere of the temperate zones because the sampling biases of AIRS/AMSU-A
climatologies have been accounted for in the MSAQC climatology.

In the tropics and subtropics the zonal average differences in Figure 6 show that the AIRS/AMSU-A cli-
matologies are ~1 K colder than MERRA at 300 hPa. The AIRS/AMSU-A temperature climatology matches
MERRA very well in the tropical free troposphere from 600 to 400 hPa. Below that, the differences alternate
such that the AIRS/AMSU-A climatology is ~0.7 K warmer than MERRA at 700 hPa, ~0.5 K colder than MERRA
at 850 hPa, and ~0.5 K warmer than MERRA again at 925 hPa.

Figure 6 also shows that the AIRS/AMSU-A water vapor climatology is ~20% drier than MERRA in the tropical
free troposphere above 700 hPa and is on average ~12% wetter than MERRA in the tropics and subtropics
in the layer from 925 to 850 hPa (Figure 6). However, the global maps of AIRS/AMSU-A-MSAQC in Figure 7
show that there are some regions over land and to the west of tropical South America in the layer from 925
to 850 hPa where the AIRS/AMSU-A climatology is drier than MERRA. These differences cancel each other
out in the zonally averaged difference maps. Neglecting the dry regions, the AIRS/AMSU-A climatology is up
to 30% wetter than MERRA in the band around Earth in the layer from 925 to 850 hPa.

In the layer from 850 to 700 hPa, just above the dry region to the west of South America, the AIRS/AMSU-A
climatology is ~25% wetter than MERRA. Although this region has a tendency for downwelling air, we do
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Figure 6. Zonally averaged differences between similarly sampled AIRS/AMSU-A and MERRA (AIRS/AMSU-A-MERRA sampled like AIRS/AMSU-A [MSAQC]) clima-
tologies of (left) air temperature in Kelvins, (middle) water vapor mixing ratio in g/kg, and (right) percent difference of water vapor mixing ratio. These differences
are an estimate of the combined measurement uncertainty of AIRS/AMSU-A and MERRA at the locations where AIRS/AMSU-A is able to obtain observations. We
have not applied a significance test to these differences.
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Figure 7. Differences between similarly sampled AIRS/AMSU-A and MERRA (AIRS/AMSU-A-MERRA sampled like
AIRS/AMSU-A [MSAQC]) climatologies of air temperature in Kelvins, water vapor mixing ratio in g/kg, and percent dif-
ference of water vapor mixing ratio, from left to right. These differences are an estimate of the combined measurement
uncertainty of AIRS/AMSU-A and MERRA at the locations where AIRS/AMSU-A is able to obtain observations.

HEARTY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2736



@AG U Journal of Geophysical Research: Atmospheres

10.1002/2013JD021205

Table 5. Measurement Uncertainty Estimates

Region

Differences?

Tropics at ~300 hPa
Tropical free troposphere between 700 and 500 hPa
and above 400 hPa over the ITCZ and SPCZ
Over tropical ocean
Band around the Earth in the tropics and subtropics ~925-850 hPa
Arctic and Antarctic at elevations below 700 hPa
Over the Antarctic ice sheets at 1000 hPa
Arctic and Antarctic above 400 hPa
Over Sahara ~700 hPa
Over Sahara 925-850 hPa
West of South America and Africa at 925-850 hPa
West of South America and Africa at 850-700 hPa
Over southern South America
Oceanic boundary layer 1000-925 hPa except for some regions in the tropics

~1 K colder and 20% drier
20% drier

Up to 0.7 K warmer at 700 hPa, 0.5 colder at 850 hPa, 0.5 warmer at 925 hPa
Up to 30% wetter
Up to 1-2 K colder

> 2 K warmer
20-40% wetter
1 K colder
2 K warmer
A few percent drier
~25% wetter
Up to 30% wetter
Up to 20% drier

2AIRS/AMSU-A climatology relative to MERRA climatology.

not know whether AIRS/AMSU-A is too wet or MERRA is too dry. However, we note that AIRS/AMSU-A also
reports larger cloud top pressures than MERRA in this region (not shown).

In the Arctic and Antarctic the AIRS/AMSU-A climatology is ~1-2 K colder than MERRA at elevations below
700 hPa. Since Wang et al. [2013] also find that AIRS/AMSU-A observations are systematically colder than
dropsonde data up to 100 hPa over Antarctica, the MERRA data may better match the dropsonde obser-
vations at elevations below 700 hPa while AIRS/AMSU-A and MERRA have similar measurement biases at

elevations above this.

Over the Antarctic ice sheets Figure 7 shows that the yearly average temperature of AIRS/AMSU-A at

1000 hPa is more than 2 K warmer than MERRA. Although this could be due to an emissivity problem in
the AIRS/AMSU retrievals, a comparison of AIRS/AMSU-A and MODIS surface temperature estimates [Lee
et al., 2013] shows that in regions of sea ice MODIS can be up to 12 K warmer than AIRS/AMSU-A which
would suggest that the differences between MODIS and MERRA would be even larger in these regions. We
think a more likely explanation is that there is a problem in the boundary layer temperatures either in the
AIRS/AMSU-A or MERRA data. Although they do not include MERRA in their study, Pavelsky et al. [2011] find
that reanalyses and climate models tend to find stronger inversions over sea ice than AIRS which is con-
sistent with Figure 7 that shows warmer temperatures for AIRS/AMSU-A at 1000 hPa. Nevertheless, further
validation of both data sets should be performed in these regions.

Since there is not much water vapor in the arctic and antarctic, the magnitudes of the differences between
the AIRS/AMSU-A and MERRA water vapor (Figure 6, middle) are small relative to the tropics, however, the
percent difference (Figure 6, right) shows that AIRS/AMSU-A is 20-40% wetter than MERRA at altitudes
above 400 hPa in the arctic. Since AIRS/AMSU-A has no skill in measuring stratospheric water vapor (Liang
et al. [2010]) and the tropopause can sometimes be low over the poles [e.g., Holton et al., 1995], these
differences could be due to erroneous stratospheric water vapor estimates from AIRS.

The zonal figure (Figure 6) suggests that the AIRS/AMSU-A water vapor climatology is up to 20% drier than
MERRA in the southern ocean boundary layer ~40-70° south latitude. However, Figure 7 shows that the
AIRS/AMSU-A climatology is drier than MERRA in the boundary layer from 1000 to 925 hPa over most of
the ocean except for a few regions near the equator to the west of continents. The dry differences over the
ocean in other regions are canceled out in the zonal averages by wet differences over land.

Canceling errors can also arise in differences between global maps of data sets that have different sam-
pling. An example of this can be seen over the Sahara, Sahel, and the Arabian Peninsula where Tian et al.
[2013, Figure 7] suggests that the AIRS/AMSU-A climatology is colder than MERRA at 850 and 700 hPa and
there are no differences at 925 hPa. However, Figure 7 from this paper shows that while the AIRS/AMSU-A
climatology is colder than MERRA at 700 hPa it is warmer than MERRA at both 925 and 850 hPa when both
data sets are sampled similarly. The cold instrumental sampling bias at 925 and 850 hPa (see section 3)
likely negates the warm measurement difference at these levels, which leads to the incorrect interpreta-
tion of the measurement differences when the sampling differences are neglected. These measurement and
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sampling differences over desert regions could be due to emissivity errors [Hulley et al., 2009] that affect
both the retrievals and the quality screening.

Another notable feature in Figure 7 is that over the ITCZ and SPCZ the AIRS/AMSU-A climatology is 20% drier
than the MERRA climatology in the layers from 700 to 500 hPa and in the layers above 400 hPa while the
layers between and below these AIRS/AMSU-A climatology is wetter than MERRA climatology. This could
indicate that deep convective clouds in these regions are causing a bias the retrievals even though the data
pass the quality control criteria or that these regions are not properly characterized in the MERRA data.

The AIRS/AMSU-A water vapor tends to be as much as 30% wetter than MERRA in the 1000-925 hPa layer
over southern South America (see Figure 7). This is consistent with Trenberth et al. [2011] who show that
MERRA is systematically dryer than European Centre for Medium-Range Weather Forecasts Reanalysis
Interim (ERA-Interim) data over southern South America and note that MERRA has major problems in this
region. Also, Lorenz and Kunstmann [2012] find that significant discrepancies exists between the precipita-
tion patterns from Global Precipitation Climatology Centre, ERA-Interim, and MERRA over South America.
We summarize the measurement uncertainties in Table 5.

5. Limitations of this Study and Future Work

Before discussing our conclusions we point out several important caveats to our analysis and potential
figure studies. We use MERRA data to estimate the sampling biases of AIRS/AMSU-A derived temperature
and water vapor climatologies given the assumption that MERRA has information where AIRS/AMSU-A does
not. However, in section 4 we show that even when MERRA is sampled similarly to AIRS/AMSU-A the differ-
ences are often larger than the sampling biases. Since MERRA may also not be able to correctly represent
the atmospheric state in regions where AIRS is not able to perform successful retrievals, our sampling bias
estimates could be flawed. The MERRA is strongly influenced by the data it assimilates. If it does not have
observations to assimilate in a particular region, it will rely more on the GEOS-5 model. Therefore, in future
studies we intend to perform similar studies using other reanalyses such as ERA-Interim or CFSR which
might better represent the diurnal cycle in certain regions because of more frequent diurnal sampling. Nev-
ertheless, since there are still large discrepancies among different reanalyses particularly with respect to the
hydrological cycle [e.g., Trenberth et al., 2011; Lorenz and Kunstmann, 2012] caution should be used when
interpreting results from any of these analyses.

Another caveat is that MERRA assimilates AIRS/AMSU-A clear sky radiances. Although this probably has little
effect on our sampling bias estimates, since assimilation data are sensitive to the data they use [e.g., English
et al., 2000], it may cause an underestimate of the combined measurement uncertainties based on the dif-
ferences between AIRS/AMSU-A and MERRA. However, since MERRA only assimilates a small number (< 1%)
of the available AIRS/AMSU-A clear sky radiances using an algorithm similar to that described by Le Marshall
et al. [2006] (R. Gelaro, personal communication, 2013) we expect this effect to be small.

Also, the MSAQC and MSA climatologies are not sampled exactly like AIRS. The MERRA data are provided
ona 1.25° x 1.25° grid with 42 vertical levels in pressure and sampled every 3 h in time. We use the near-
est MERRA profile in space and time and interpolate the MERRA water vapor profile in pressure to simulate
the AIRS/AMSU-A water vapor layers. Errors due to interpolation or subgridscale variability could cause an
overestimate of the uncertainty when comparing similarly sampled AIRS/AMSU-A and MERRA climatologies.

We also point out that these sampling bias estimates are for AIRS, an infrared instrument on the Aqua
spacecraft, which is in a Sun-synchronous orbit with a 1:30 A.M./P.M. equator crossing time. Although our
conclusions might be applicable to other infrared instruments, even an instrument exactly like AIRS/AMSU-A
in a different Sun-synchronous orbit might have different instrumental and temporal components to the
sampling bias. Also, we show the sampling biases based on averages over 9 years of observations. Because
of the limited swath width of AIRS we expect that the temporal sampling biases are larger for any given
daily or monthly average because regions with large spatial or synoptic variability may not be sufficiently
sampled at shorter time scales.

We show in this paper that averaging over the ascending (day) and descending (night) parts of the
AIRS/AMSU-A orbit and averaging over different seasons can cause sampling biases to cancel out. Similar
diurnally or seasonally dependent measurement differences may also cause errors in our combined mea-
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surement uncertainties of AIRS/AMSU-A and MERRA climatologies. We plan to investigate these differences
in a subsequent paper focusing on the seasonal and diurnal differences between AIRS/AMSU-A and MERRA.

6. Conclusions

We investigate the magnitude of the sampling biases of AIRS/AMSU-A temperature and water vapor cli-
matologies by calculating the differences between MERRA climatologies created with different sampling

as described in Table 1. These differences enable us to calculate the total sampling bias and separate it

into two components. The temporal component to the sampling bias is caused by the Aqua space craft’s
Sun-synchronous low Earth orbit and limited swath width. The instrumental component is caused by certain
scenes for which retrievals are not possible or they are rejected by the quality control.

Consistent with previous studies [e.g., Guan et al., 2013; Fowler et al., 2000], we find that the temporal
sampling biases are relatively small compared to the instrumental sampling biases and measurement uncer-
tainties. Nevertheless, the temporal sampling biases can be statistically significant in regions with a large
diurnal variation such as the boundary layer and certain regions in the tropical troposphere. The temporal
sampling biases of temperature are only significant in the boundary layer. We find wet temporal sampling
biases in the tropical boundary layer and both wet and dry temporal sampling biases in the tropical free
troposphere in regions with a large diurnal variation. The bias can be both wet and dry depending upon
which phase of the diurnal cycle is sampled by the AIRS/AMSU-A 1:30 A.M./P.M. equator crossing time.
The temporal sampling biases we show would be experienced by any Earth observing instrument in a
Sun-synchronous low Earth orbit with a 1:30 A.M./P.M. equator crossing time (e.g., other instruments on
Aqua or Suomi) although they could be larger or smaller depending upon the swath width.

Instrumental sampling biases are caused by atmospheric or environmental conditions (e.g., uniform or thick
clouds, warm scenes, Sun glint) that prevent the instrument or algorithm from successfully retrieving the
atmospheric state. Therefore, the instrumental sampling biases tend to be larger and more varied than the
temporal sampling biases. Although the instrumental sampling biases of an AIRS/AMSU-A derived climatol-
ogy are often small compared to other sources of error such as the measurement uncertainties, they can be
large in specific geographic regions and can influence comparisons with differently sampled data sets. For
example, instrumental sampling accounts for most of the tropospheric cold/dry bias in the temperate zones
over storm tracks and much of the dry bias over the tropical deep convective regions, such as the Intertrop-
ical Convergence Zone and the South Pacific Convergence Zone. Clouds are the likely main cause of these
biases since there is a reduction in the fraction of accepted retrievals in these regions that resembles the dis-
tributions of cloudy regions. However, other factors such as surface emissivity and surface temperature can
also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10%
wet. Some instrumental sampling biases can vary seasonally and/or diurnally. Except for the boundary layer,
where both temporal and instrumental sampling biases are present, the total sampling biases are mainly
from the instrumental sampling biases.

Sampling biases can lead to erroneous conclusions when comparing differently sampled data sets or aver-
aging over different seasons or parts of the orbit. For example, we show a cold instrumental sampling bias
over deserts masks a warm measurement difference when sampling differences are not considered. Also,
averaging the AIRS/AMSU-A data over the ascending (daytime) and descending (nighttime) parts of the
orbit cancels out some sampling biases. During DJF season we find a wet instrumental sampling bias over
Australia in the daytime and a dry instrumental sampling bias at night that cancel each other out in the
yearly and diurnally averaged sampling bias estimates. Similar instrumental sampling biases to what we
show likely exist for climatologies derived from other infrared instruments (e.g., IASI, CrlS, and MODIS) that
are not be able to perform retrievals under all observing conditions. Since these sampling differences can
be significant they should be considered when performing intercomparisons of satellite observations with
regularly gridded data sets like climate models.

In order to separate measurement differences from the sampling differences, we compare temperature and
water vapor climatologies derived from similarly sampled AIRS/AMSU-A and MERRA measurements. While
the uncertainties in the current generation of climate models are larger than the combined uncertainties of
AIRS/AMSU-A and MERRA even without accounting for the differences in sampling [e.g., Tian et al., 2013], as
the models improve, more careful intercomparisons will be necessary.
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Also, the differences between similarly sampled AIRS/AMSU-A and MERRA temperature and water vapor
climatologies are smaller than when sampling differences are neglected (Tian et al. [2013]); however, there
are still significant measurement differences between the AIRS/AMSU-A and MERRA data (Figure 7).

In the tropical upper troposphere the AIRS/AMSU-A climatology tends to be colder and drier than the
MERRA climatology. AIRS is also drier than MERRA in the tropical free troposphere above 700 hPa. Although
the AIRS/AMSU-A climatology is generally wetter than MERRA in the ~925-850 hPa layer in the tropics,
there are regions within this band over land and over the Pacific Ocean to the west of tropical South Amer-
ica where AIRS/AMSU-A is drier. In the arctic and antarctic the AIRS/AMSU-A climatology is ~1-2 K colder
than MERRA at elevations below 700 hPa except over the antarctic ice sheets where the AIRS/AMSU-A clima-
tology is ~2 K warmer than MERRA. Also, in the arctic and antarctic the AIRS/AMSU-A climatology is ~30%
wetter than MERRA at elevations above 400 hPa. The measurement differences between AIRS/AMSU-A and
MERRA could be caused by a number of deficiencies in either data set such as assumptions about the sur-
face type, paucity of assimilation data, or artifacts of cloud clearing. Further studies of the regions where
there are significant differences between the AIRS/AMSU-A and MERRA climatologies should be performed
to improve the observations and to determine the locations where either the AIRS/AMSU-A or the MERRA
observations are better suited to evaluate climate models.
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