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[1] 183.31 GHz observations from the Advanced Microwave Sounding Unit B (AMSU-
B) instruments onboard the NOAA 15, 16, and 17 satellites were used to derive a new
data set of Upper Tropospheric Humidity (UTH). The data set consist of monthly median
and mean data on a 1.5� latitude-longitude grid between 60�S and 60�N, and covers
the time period of January 2000 to February 2007. The data from all three instruments are
very consistent, with relative difference biases of less than 4% and relative difference
standard deviations of 7%. Radiometric contributions by high ice clouds and by the
Earth’s surface affect the measurements in certain areas. The uncertainty due to clouds
is estimated to be up to approximately 10%RH in areas with deep convection. The
uncertainty associated with contamination from surface emission can exceed 10%RH
in midlatitude winter, where the data therefore should be regarded with caution.
Otherwise the surface influence appears negligible. The paper also discusses the UTH
median climatology and seasonal cycle, which are found to be broadly consistent
with UTH climatologies from other sensors. Finally, the paper presents an initial validation
of the new data set against IR satellite data and radiosonde data. The observed biases
of up to 9%RH (wet bias relative to HIRS) were found to be broadly consistent
with expectations based on earlier studies. The observed standard deviations against
all other data sets were below 6%RH. The UTH data are available to the scientific
community on http://www.sat.ltu.se.

Citation: Buehler, S. A., M. Kuvatov, V. O. John, M. Milz, B. J. Soden, D. L. Jackson, and J. Notholt (2008), An upper tropospheric

humidity data set from operational satellite microwave data, J. Geophys. Res., 113, D14110, doi:10.1029/2007JD009314.

1. Introduction

[2] Water vapor in the upper troposphere is responsible
for a large part of the atmospheric greenhouse effect.
Furthermore, the feedback associated with this parameter
significantly amplifies the response of the climate system to
changes in anthropogenic greenhouse gases such as carbon
dioxide [Held and Soden, 2000]. The amount of total water
vapor in the atmosphere is expected to increase as the
climate warms [Trenberth et al., 2005], but the changes in
upper tropospheric water vapor in a warming climate have

been the subject of debate [e.g., Lindzen et al., 2001;
Minschwaner and Dessler, 2004; Soden et al., 2005].
Recent modeling studies indicate that climate models all
show similar water vapor feedback broadly consistent with
that expected from a constant relative humidity increase in
upper tropospheric water vapor, despite the fact that they
have very different humidity mean states [John and Soden,
2007; Soden and Held, 2006]. However, the available data
for upper tropospheric water vapor are neither sufficient to
quantify long-term changes, nor sufficient to evaluate
climate models [de F. Forster and Collins, 2004].
[3] The longest available humidity data record is from

radiosondes. However, radiosonde humidity measurements
can suffer from significant biases [Elliott et al., 2002; Soden
and Lanzante, 1996] which make it hard to use that data
record for climate monitoring. Even comparatively high
quality radiosonde data contain significant biases [Soden
et al., 2004; Buehler et al., 2004]. Another drawback is that
the spatial coverage of radiosonde measurements is poor.
[4] Due to their global coverage, satellite measurements

have a great potential for climate studies. Several research
satellite instruments measure upper tropospheric water va-
por, for example the Microwave Limb Sounder (MLS)
[Read et al., 1995; Cuddy et al., 2006] and the Atmospheric
Infrared Sounder (AIRS) [Aumann et al., 2003]. Several
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studies were carried out using these data sets. For example,
Gettelman et al. [2006] found that upper tropospheric hu-
midity calculated from AIRS observations shows variability
on multiple timescales, ranging from seasonal variations to
high frequency variations associated with baroclinic storms.
[5] Unfortunately, data from these instruments are only

available for relatively short time periods, which limits their
use for creating a long-term data record. In contrast to this,
instruments on operational meteorological satellites provide
consistent and long-term measurements. In general, two
frequency regions are used to measure water vapor opera-
tionally, one in the infrared (IR) spectral region near 6.3 mm
and another one in the microwave spectral region near
183.31 GHz. The IR measurements are available from
geostationary and polar orbiting satellites, whereas the
microwave measurements are only available from polar
orbiting satellites.
[6] The IR instrument HIRS [Smith et al., 1979] provides

the longest available upper tropospheric humidity (UTH)
record from satellite measurements, dating back to 1979.
UTH is defined here as the Jacobian-weighted relative
humidity in the upper troposphere (see Soden and Bretherton
[1996] for details). Numerous scientific studies have been
conducted using these data [e.g., Soden and Bretherton,
1996; Spangenberg et al., 1997; Bates and Jackson, 2001;
Bates et al., 2001; Allan et al., 2003; Soden et al., 2005].
[7] A shortcoming of IR data in general is that measure-

ments in cloudy regions cannot be used in most cases.
Therefore the data record created from HIRS measurements
has a clear-sky or dry bias due to the fact that cloudy
regions are associated with high humidity [Lanzante and
Gahrs, 2000]. An additional problem may be contamination
by very thin cirrus clouds in nominally clear areas [Berg et
al., 1999].
[8] The problem of clear-sky bias in UTH data sets can be

overcome, or at least significantly reduced, by using micro-
wave measurements [Buehler et al., 2007]. Continuous
UTH measurements from microwave instruments on board
satellites have been available since 1994. Currently there are
three operational microwave instruments measuring UTH:
the Special Sensor Microwave (SSM/T-2) on board the
DMSP satellites, the Advanced Microwave Sounding Unit
B (AMSU-B) on board the NOAA 15, 16, and 17 satellites,
and the Microwave Humidity Sounder (MHS) on board the
NOAA 18 and the MetOp A satellite. Since we will be
frequently mentioning the different NOAA satellites, they
will henceforth be referred to as N15 to N18, respectively.
For practical reasons, since the data were at hand, only the
AMSU-B measurements are used in the current study.
[9] Several authors [e.g., Rosenkranz, 2001; Jimenez et

al., 2005] have demonstrated the possibility to retrieve
humidity from AMSU-B measurements. However, to our

best knowledge there is no published study on the clima-
tology of UTH from AMSU-B measurements, and no
publicly available AMSU based UTH data set.
[10] This article focuses on describing the properties of

such a data set, which we are making available to the
scientific community. The article is organized as follows:
section 2 describes the method of estimating UTH from
AMSU-B measurements, the cloud filtering method, and the
gridding of the data. section 3.1 describes the properties of the
new data set. It discusses the UTH climatologies (section 3.1),
intersatellite differences (section 3.2), the uncertainty intro-
duced by clouds and surface effects (section 3.3), and seasonal
UTH variations (section 3.4). Section 4 presents and discusses
the comparison of the AMSUUTH to other important data sets
of UTH. Finally, section 5 gives summary, conclusions, and
outlook.

2. Methodology

[11] The UTH data set described here was derived from
AMSU-B measurements from three different NOAA satel-
lites, N15 to N17. AMSU-B is a cross-track scanning,
passive, total power microwave radiometer. It has two
channels centered at 89 and 150 GHz, respectively, and
three channels centered around the water vapor line at
183.31 GHz [Saunders et al., 1995]. All channels work in
double sideband mode. The details of the channels are
summarized in Table 1. Note, that the values of the noise
equivalent temperature (NEDT) are from the first flight
model, not from the instruments currently operating. Fur-
thermore, the actual noise values differ slightly between the
three AMSU instruments used here.
[12] The instrument has a swath width of approximately

2300 km, with 90 individual measurement pixels along the
swath. The nadir viewing angle for the two innermost scan
positions is 0.55�, for the two outermost scan positions it is
48.95�. Because of the Earth’s sphericity, this corresponds
to incidence angles of 0.62� for the innermost scan positions
and 58.5� for the outermost scan positions. The target area
size of the measurements at nadir and at the outermost scan
position is 20 � 16 km2 and 64 � 52 km2, respectively. The
orbit characteristics and launch times of the different NOAA
satellites are summarized in Table 2.
[13] We used level 1b data from the Comprehensive

Large Array-data Stewardship System (CLASS). They were
converted to level 1c data (brightness temperatures for each
AMSU-B pixel) with the ATOVS and AVHRR Processing
Package (AAPP), which is briefly described by Atkinson
and Whyte [2003]. The time period of data used varied from
satellite to satellite and is shown in Table 2. For N15, data
are available from January 2000. Although N15 was
launched in 1998, data recorded before January 2000 have

Table 2. Characteristics of the Different NOAA Satellitesa

Satellite
Equator

Cross. Time
Mean

Alt., km
Launch
Date

Data Used
From

N15 05:58 a.m./p.m. 807 May 1998 Jan 2000
N16 02:11 a.m./p.m. 850 Sep 2000 Oct 2000
N17 10:24 a.m./p.m. 810 Jun 2002 Aug 2002
N18 01:55 a.m./p.m. 854 May 2005 not used

aAll satellites are polar-orbiting on a sun-synchronous orbit. (Information
is taken from the WMO Space Program web page at http://www.wmo.ch/
web/sat/POLpresent.html.)

Table 1. Channel Characteristics of the AMSU-B Instrument

From the NOAA KLM User Guide (http://www2.ncdc.noaa.gov/

docs/klm/)

Channel Center Freq., GHz NEDT, K

16 89.0 ± 0.9 0.37
17 150.0 ± 0.9 0.84
18 183.31 ± 1.0 1.06
19 183.31 ± 3.0 0.7
20 183.31 ± 7.0 0.6
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been excluded due to the radio frequency interference
problems that the AMSU-B on this satellite had at the
beginning [Atkinson, 2001]. For the instruments on board
N16 and N17, the data coverage starts in October 2000 and
August 2002, respectively. The data sets of all three instru-
ments currently reach until February 2007.
[14] The method described by Buehler and John [2005]

was used to retrieve UTH from microwave measurements. It
defines UTH as the relative humidity with respect to liquid
water, weighted by the AMSU-B Channel 18 Jacobian. The
Jacobian used is the derivative of the brightness temperature
with respect to the water vapor volume mixing ratio in
fractional units (see the above paper for more details).
[15] The peak altitude of the AMSU-B Channel 18

Jacobian is similar to the Jacobian near 6.3 mm, which is
the wavelength commonly used to derive IR UTH products.
Hence our UTH and IR UTH are comparable, but not
numerically identical. Both IR and microwave UTH corre-
sponds roughly to the mean relative humidity between 500
and 200 hPa.
[16] These UTH products are radiances scaled to a more

intuitive unit. The scaling is given by

ln UTHð Þ ¼ aþ bTb; ð1Þ

where UTH is the Jacobian-weighted mean of the fractional
relative humidity in the upper troposphere, ln() is the
natural logarithm, Tb is the Channel 18 radiance expressed
in brightness temperature, and a and b are constants. The
constants a and b have been determined by Buehler and
John [2005] by linear regression for a diverse atmospheric
profile data set. The coefficients themselves are not
repeated here, but note, that a brightness temperature
difference of 1 K corresponds to a relative change in UTH
of approximately 7%.
[17] According to the simulations by Buehler and John

[2005], the accuracy of this method should be 2%RH and
7%RH at low and high UTH values, respectively. This is the
accuracy of the scaling method, compared to the true
Jacobian-weighted mean UTH. It includes the uncertainty
due to radiometric noise, but not the uncertainty due to any
systematic biases of the AMSU instruments. To assess the
latter is difficult, because of the lack of high quality
validation data sets. Comparisons of AMSU-B data to
radiosondes [Buehler et al., 2004; John and Buehler,
2005] showed good agreement for carefully calibrated
reference radiosondes, but not surprisingly less good agree-
ment for the global operational radiosonde record. A cross-
comparison with AIRS humidity measurements is probably
more suited for validation. Such a study is currently in
progress.
[18] Measurements from all AMSU-B viewing angles

were used to obtain good spatial coverage. This requires
viewing angle dependent scaling coefficients for equation (1)
that are available by Buehler and John [2005]. Since the
Jacobians for the different angles are not identical, the
altitude weighting for the UTH from the different viewing
angles is slightly different. However, the resulting differ-
ences in the UTH climatology are very small if the correct
coefficients are used, as demonstrated by John et al. [2006,
Figure 6].

[19] When using data from different viewing angles,
scan-dependent instrumental biases need to be mitigated.
This was investigated for the three AMSU instruments that
are used here by Buehler et al. [2005b], with the conclusion
that these biases are below approximately 0.5 K for the
instruments on N16 and N17, but up to approximately 2 K
for the instrument on N15. At that level, scan dependent
biases are not expected to affect the total UTH climatology
significantly, except perhaps for N15, where the relative
error in UTH related to scan bias could reach a few percent.
[20] Microwave humidity data are affected by two con-

taminations: clouds and surface influence. Clouds can affect
measurements if they are high enough to be seen by
Channel 18 and if they contain a sufficient amount of ice.
The surface can affect measurements if the atmosphere is so
dry that Channel 18 sees the surface, which happens at total
column water vapor below 3 kg/m2 [Buehler et al., 2007].
This usually only occurs at high latitudes or in high
mountain regions. The effect is strongest where the surface
emissivity is low, for example in snow covered areas.
[21] Buehler et al. [2007] also showed that a simple filter,

combining a threshold on the Channel 18 brightness tem-
perature with a threshold on the Channel 20-18 brightness
temperature difference, can reliably screen out both cloud
and surface contamination. It is important to note that clouds
affect microwave measurements significantly less than IR
measurements. Channel 18 usually only detects clouds with
an ice water path (IWP) of several hundred g/m2 (compare
Buehler et al. [2007, Figure 4].
[22] For midlatitudes, Buehler et al. [2007] found that

both the cloud wet bias and the cloud filtering dry bias in a
microwave UTH climatology are modest. Figures in this
paper show cloud filtered data unless stated otherwise. The
impact of cloud filtering on the data is discussed in detail in
section 3.3.
[23] UTH was derived from the Channel 18 radiance for

each AMSU-B pixel. These data were collected for time
periods of one month in 1.5� � 1.5� latitude-longitude grid
cells. Optionally, the cloud filter of Buehler et al. [2007]
was applied to each pixel, and the pixel discarded if the
filter indicated cloud contamination. We stored both the
cloud-filtered and the unfiltered data set. For both data sets,
various statistical parameters (number of measurements,
median, mean, standard deviation) were calculated for each
month and grid cell. Data from different satellites were
stored separately. The result is a monthly climatology with
1.5� � 1.5� spatial resolution. The number of UTH values
that contribute to the statistics in each grid cell varies, but is
of the order 3000.
[24] The data set was restricted to the area between 60�S

and 60�N, since at higher latitudes the data are too contam-
inated by surface contributions, due to the low column
water vapor values in these regions. All the data are freely
available on the Web site http://www.sat.ltu.se.

3. Data Set Properties

[25] In the following subsections we will discuss some
general features of the new data set. We will start with the
UTH median climatology, then discuss intersatellite differ-
ences, uncertainties due to clouds and surface contributions,
and finally seasonal variations in the data.
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3.1. UTH Median Climatology

[26] To estimate the median climatology, the available
data sets were restricted to the common time period August

2002 to July 2006, when all three instruments were opera-
tional. This time period was chosen in order to allow a direct
comparison between the instruments on different satellites.
Figure 1 shows maps of the median of the monthly medians

Figure 1. UTH retrieved from different NOAA satellites. (Medians of the monthly medians.) From top
to bottom: N15, N16, and N17. Time period of data used is August 2002 to July 2006.
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of retrieved UTH for each of the three satellites. We show
the median instead of the mean here, as this was found by
John et al. [2006] to be more appropriate for UTH, due to
the non-Gaussian nature of the UTH distribution. The maps
for all three instruments are very similar. The common
features will be discussed here, whereas the differences will
be discussed in the next section.
[27] The distributions obtained for all three AMSU-B

instruments reflect the prevailing distribution of UTH,
determined by the general circulation. In interpreting the
plots, it is important to keep in mind that UTH is a measure
of relative humidity, not absolute humidity. Thus regions of
subsidence are marked by low UTH, because sinking air
warms adiabatically, and relative humidity decreases ac-
cordingly. In contrast to this subsidence drying, regions of
ascent are marked by high UTH. When the air rises,
temperature drops adiabatically, and relative humidity
increases accordingly until the saturation point is reached.
Further ascent is moist-adiabatic, with humidity staying at
the saturation point, and excess-moisture being converted to
condensate. This is an over simplification, because it
neglects both the details of condensate nucleation, and the
possible presence of super saturation, particularly with
respect to ice. Nevertheless, it describes the global picture
quite well.
[28] At low latitudes, in the tropics and subtropics, the

dominating global circulation pattern is the overturning
Hadley circulation. As expected, regions with deep convec-
tion in the intertropical convergence zone (ITCZ) exhibit
high UTH, close to saturation with respect to ice. (Note that
100%RHi (relative to ice) occurs significantly below
100%RH (relative to liquid water) at low temperatures.
At 250 K, ice saturation is reached at approximately
80%RH, at 220 K it is reached at approximately
60%RH.) In contrast to the regions of ascent, the subsidence
regions in the descending branch of the Hadley circulation in
the subtropics exhibit low UTH. This general meridional
pattern is clearly visible in Figure 1.
[29] Additionally, the figure also shows zonal patterns. In

the band with high UTH around the ITCZ, there are three
areas with pronouncedly high humidity: one over central
Africa, one over the maritime region between South Asia
and Australia, and one over Central America. All three
regions are associated with the strongest convective systems
inside the ITCZ, transporting large amounts of air (and
moisture) to the upper troposphere.
[30] Similarly strong zonal variations can be found in

the subsidence areas. Regions with particularly low UTH
in Figure 1 are located in the subtropics in the eastern
regions of the oceans, particularly in the North and South
Pacific and the North and South Atlantic. Here zonal
circulations, such as the Walker circulation in the equato-
rial Pacific Ocean, are superimposed onto the meridional
circulation systems. In general, the low humidity patches
are drier in the Southern Hemisphere than in the Northern
Hemisphere.
[31] Besides the wet band in the ITCZ, wet bands can also

be found at midlatitudes approximately between 40–60� in
both hemispheres. These bands are due to wave activities in
the midlatitudinal west wind zone with the associated
weather and wind systems [Bates and Jackson, 2001]. The
highest UTH values over Northeast Asia near 60�N should

be considered with caution, since this area is affected by
surface contamination in winter (more on this in section 3.3).
Applying the surface and cloud contamination filter can have
moist-biased the UTH statistics in this area, because surface
contamination occurs when the atmosphere is very dry.
[32] The median distribution of UTH obtained from the

AMSU-B instruments is broadly consistent with the global
humidity distribution observed by other instruments. For
example, it is consistent with the distribution reported by
Soden and Bretherton [1996] for the time period 1981–
1991 using TOVS data and with that of Bates and Jackson
[2001] for the time between 1979 and 1998 using HIRS
data. Both these other instruments retrieve UTH from
infrared data using the 6.7 mm water vapor band. Gettelman
et al. [2006] present relative humidity results from IR
instrument AIRS for a layer between 250 and 200 hPa.
Although these results cover only the upper levels of the
UTH product provided from AMSU–B, the observed
patterns and the seasonal variation are in agreement.

3.2. Intersatellite Differences in UTH

[33] Although the distributions of UTH in Figure 1 all
appear to be similar, there are differences between the
instruments on different satellites. Figure 2 shows these
differences for one month of data, August 2006. N16 is
taken as the reference, the top row shows the difference for
N15, the bottom row for N17. The left column shows
maps of the relative difference. These plots reveal that
UTH from N15 is systematically drier than UTH from
N16. On the other hand, N17 and N16 are in much closer
agreement. An area-weighted average over all grid points
yielded mean relative differences of �3.4% for N15 and
+1.0% for N17, relative to N16. (The area-weighted mean
was calculated by weighting each grid point with the
cosine of the latitude. The values are practically identical
to unweighted averages over all grid points.) This implies
that the N15 brightness temperatures are somewhat warmer
than those from N16 and N17. The standard deviations
associated with the mean relative differences are encour-
agingly low, approximately 5% for N15 and approximately
6% for N17.
[34] The right column of Figure 2 shows scatterplots of

UTH(N15) and UTH(N17) versus UTH(N16). These plots
reveal a very high correlation with a correlation coefficient
of 0.99 in both cases. The maximum scatter occurs at
UTH values near 40%RH.
[35] In the scatterplot for N15 versus N16, the dashed

line showing the linear fit is clearly off the ideal diagonal
for high UTH values, while it appears to be close to the
diagonal for low UTH values. This suggests an absolute
radiance warm bias for N15 as the source of the discrep-
ancy, because such a bias directly leads to a relative dry
bias in UTH, due to the logarithm in equation (1).
[36] In addition to the large-scale biases, the relative

difference maps also show pronounced spatial patterns.
These patterns in the N15 and N17 plots are highly
correlated, which makes it likely that they are related to
spatial and temporal sampling differences between N16 and
the other two satellites. Most significant here is that the
observations are made at different local times (see Table 2).
The diurnal cycle in UTH and high reaching clouds [e.g.,
Tian et al., 2004; Chung et al., 2004, 2007] may explain
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some of the patterns found. Indeed, useful information on
the diurnal cycle could potentially be extracted from these
patterns.
[37] It is important to check, whether the biases between

the different AMSU-B instruments are constant, or wheth-
er they drift with time. As a measure for the bias we take,
once again, the area-weighted mean relative difference.
Figure 3 shows the time evolution of that quantity for
N15-N16 (top) and N17-N16 (bottom). The error bars
show the associated standard deviations. The standard
deviations for both sensors are similar and do not change
much from month to month. The standard deviation value
is approximately 7%.
[38] The N15-N16 bias varies slightly, without a clear

trend. Relative difference values in UTH are around �2% to
�4%, corresponding to a radiometric offset of +0.3 K to
+0.6 K according to equation (1). The N17-N16 bias has
drifted during the operation time of N17 from approximately
�1% (+0.1 K radiometric offset) to +2% (�0.3 K radiometric
offset). The reason for this drift is unclear.
[39] To summarize this section, we find that there are both

sampling and instrumental differences in UTH between the
different AMSU-B instruments. They have means (biases)
of below 4% relative error and standard deviations of
approximately 7%. The sampling differences could be due
to temporal aliasing from insufficiently resolving the diurnal
cycle of humidity and clouds.
[40] The instrumental differences appear to be due to

radiometric offsets. To put these results into perspective

Figure 2. Differences in gridded UTH for August 2006 between the AMSU-B instruments on different
satellites. The left column shows maps of the relative difference. Top: [UTH(N15) � UTH(N16)]/
UTH(N16), Bottom: [UTH(N17) � UTH(N16)]/UTH(N16). The right column shows scatterplots. The
dashed lines in the scatterplots are linear fits.

Figure 3. Time evolution of UTH biases. Shown is the time
evolution of the area-weighted mean relative difference for
N15–N16 (top) and N17–N16 (bottom). Error bars show the
standard deviations associated with these means.
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one should note that these discrepancies are comparable in
magnitude to the uncertainty that is introduced by clouds
(see next section), and small in comparison to the large
discrepancies that generally persist between different UTH
data sets. For example, Soden et al. [2004] have docu-
mented discrepancies between radiosondes and IR satellite
measurements of 40% relative difference in UTH and John
and Soden [2007] reported that climate models show up to
100% relative difference in upper tropospheric water vapor
with respect to AIRS observations.

3.3. Impact of Clouds and Surface Contributions

[41] As documented for example by Greenwald and
Christopher [2002] and Buehler et al. [2007], high ice clouds
can affect microwave UTH measurements. Furthermore,
surface contributions can affect microwave UTH measure-
ments for very dry atmospheres. The cloud and surface filter,
that was developed by Buehler et al. [2007], was therefore
applied to the data, as explained in section 2. Results shown
so far were for the filtered data. Here, we discuss the
uncertainty that is introduced into the UTH climatology by
the filtering procedure.
[42] Figure 4 shows the differences between the unfiltered

and the filtered median UTH for N16 and four different
months. The months January 2006, April 2006, July 2006,
and October 2006 were chosen to represent the different
seasons. Clouds mostly introduce a wet bias, because the
cloud signal is interpreted as additional moisture for unfil-
tered data. In the case of surface effects, which occur at
midlatitudes in the winter season, there can be dry or wet
biases, depending on humidity profile and surface type.
[43] Our recommendation is to use Figure 4 as an

uncertainty estimate for the UTH data, particularly for
Figure 1 and for Figure 5. From the case studies that were
carried out by Buehler et al. [2007], one can expect the true
all-sky UTH median and mean values to be between the
filtered and the unfiltered microwave UTH values. The
uncertainty introduced by clouds is up to approximately
10%RH in areas with strong convection. Surface contami-
nation in midlatitude winter can introduce even larger
uncertainties, therefore the midlatitude winter data should
only be used with caution.
[44] Note, that the cloud uncertainty quoted above is for

the gridded monthly mean data, not for individual AMSU
pixels, where the uncertainty can be much higher. If one
takes that into account, then our results are roughly consis-
tent with those of Greenwald and Christopher [2002], who
found that nonprecipitating clouds produce on average
5%RH error in UTH retrievals, and precipitating clouds
produce on average 18%RH error. This comparison is
discussed further by Buehler et al. [2007].
[45] To summarize, there are nonnegligible uncertainties

in microwave UTH data due to cloud and surface effects.
Nevertheless, microwave data allow a much closer guess for
the true all-sky UTH climatology than IR data, since the
number of cloud cases that affect the microwave measure-
ments is lower. The simple approach to use filtered and
unfiltered data as estimates for the uncertainty range is not
possible for IR data, due to their stronger sensitivity to
clouds.

3.4. Seasonal Variations in UTH

[46] To show the seasonal cycle of UTH, we use the same
four months that were used in the previous section: January
2006, April 2006, July 2006, and October 2006. Figure 5
shows the monthly median UTH for these four months from
N16. In January (top plot) the low humidity belt related to
the subsiding branch of the Hadley circulation is stretched
all through the subtropics in the Northern Hemisphere
reaching close to the equator over eastern Africa and the
central and eastern Pacific, only interrupted by two narrow
regions of high humidity stretching to higher latitudes west of
America and across northern Africa. In the dry branches,
UTH is less than 35%RH. The driest values of UTH are
found in the central part of the northern Pacific and over
the Arabian Sea with values below 10%RH.
[47] In the Southern Hemisphere, the low humidity

values associated with the subsiding branch of the Hadley
circulation are not as evenly distributed zonally as in the
Northern Hemisphere, with several bands of increased
humidity extending into midlatitudes. The driest regions
in the Southern Hemisphere are found over the oceans close
to the continental coastlines, in the South Pacific along the
South American coastline, and in the South Atlantic along
the African continent with values down to 10%RH. In the
Indian Ocean, close to the Australian coastline, UTH values
reach down below 10%RH.
[48] The ITCZ is located at its southernmost position in

January, south of the equator, with UTH maxima of 50–
55%RH over central South America, southern Africa, and
Indonesia.
[49] The northern midlatitude values for UTH are very

high, especially over the large land areas in northern Canada
and northern Russia, where the continental climate leads to
very low temperatures and correspondingly low total col-
umn water vapor. A check with Figure 4 reveals that these
values cannot be trusted, as they are strongly influenced by
surface contributions.
[50] In April (second plot in Figure 5) the humid ITCZ

has moved northward except over the Atlantic. It is now
situated around the equator with decreased UTH. The dry
northern subtropical band has weakened and in some areas
shifted toward lower latitudes. Other patterns found in
January are still visible in April, but both the dry and wet
extremes have decreased in amplitude.
[51] In July (third plot in Figure 5) the southern subtrop-

ics are dominated by a closed belt of low humidity. Lowest
UTH values are observed in the Indian Ocean and in the
East Pacific. The highest UTH values appear east of India
and can be related to the Indian Monsoon. The band with
high UTH marks the shift of the ITCZ to a position north of
the equator. In the Northern Hemispheric subtropics there
are two distinct patches of low UTH. One stretches from
the Atlantic over North Africa to central Asia. This patch
has its lowest UTH values below 10%RH in the region
between the north of the Arabic Peninsula and northern
Egypt. A second patch with less extreme low UTH values is
located at the east side of the Pacific close to North
America.
[52] In October (bottom plot in Figure 5) the moist ITCZ

has moved slightly southward again and both dry and wet
extremes have decreased in amplitude. The low humidity
belt in the southern subtropics is interrupted by narrow
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Figure 4. Differences between the unfiltered and the filtered median UTH for N16 and four different
months, January 2006, April 2006, July 2006, and October 2006.
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Figure 5. Monthly median UTH for N16 and four different months, January 2006, April 2006, July
2006, and October 2006.
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regions of high UTH reaching from the ITCZ to southern
midlatitudes, mainly over the continents.
[53] The results on the seasonal variation of UTH are

broadly consistent with the results reported by Chen et al.
[1999, Plate 1] who investigated the seasonal variations in
MLS humidity and cloud data. This is despite the fact that
the data used there were for 215 hPa, whereas our data
approximately are an average over the altitude region
between 500 and 200 hPa.

3.5. Variations in AMSU-B Sounding Altitude

[54] As mentioned in section 2, and as discussed in more
detail by Buehler and John [2005], the UTH definition as a
Jacobian-weighted mean relative humidity implies that the
actual altitude, over which the mean is taken, varies slightly
for different atmospheric situations. This is not only true for
the AMSU UTH product, but also for similar IR UTH
products, such as those described by Soden and Bretherton
[1996]and Jackson and Bates [2001].
[55] Figure 6 illustrates this variation by showing how

the Jacobian peak altitude changes during the course of
2 years for a midlatitude location (DWD reference station
Lindenberg at approximately 52�N, see section 4.2 for
exact position). The figure was generated by calculating
the peak of the AMSU-B Chanel 18 Jacobian based on
radiosonde profiles of temperature and humidity, which are
available four times per day. The program used to calculate

the Jacobians was the Atmospheric Radiative Transfer
Simulator (ARTS) [Buehler et al., 2005a].
[56] The seasonal cycle in peak altitude has an amplitude

of approximately 100 hPa around a mean value of approx-
imately 450 hPa. The seasonal curve was obtained by
smoothing the individual measurements with a 30-d boxcar
filter.
[57] For individual measurements, the standard deviation

of the fluctuations in Jacobian peak altitude around the
smoothed seasonal curve is only 71 hPa. This means,
although extreme peak altitudes as low (in altitude) as
800 hPa are possible in rare cases, the AMSU measurement
is generally observed at the same altitude. The rare outlier
cases are those cases when the atmosphere is extremely dry.
Both the occurrence of these outlier cases, and the seasonal
cycle itself, should be less pronounced closer to the equator
than for this midlatitude location, which is close to the
northern latitude limit of the UTH data set.
[58] Although the variations in sounding altitude are not

very large, the recommended way to compare this kind of
UTH data set to a climate model is to simulate microwave
radiances for the model fields and scale them to UTH, using
the scaling coefficients by Buehler and John [2005]. Fast
radiative transfer models to calculate the radiances are
openly available, e.g., RTTOV [Saunders et al., 1999].

4. Comparison to Other Related Data Sets

[59] The purpose of this section is to provide an initial
validation of the new AMSU UTH data set. We present and
discuss comparisons to IR satellite data (HIRS and, very
briefly, AIRS) as well as to radiosonde (RS) data. All the
AMSU data used in this section are from N16.
[60] In the comparison, we mostly look at three statistical

parameters: the mean difference (in %RH), the standard
deviation of the difference (in %RH), and the correlation
coefficient (absolute number). We frequently refer to the
mean difference as ‘‘bias’’.

4.1. Global Comparison to Infrared Satellite Data

[61] Figure 7 shows a comparison of the mean field for
2 years of AMSU and HIRS UTH data. The HIRS UTH
data are from the satellite N14 and were produced with the
algorithm of Soden and Bretherton [1996]. As the figure
shows, the HIRS data has a dry bias against the AMSU
data. Its value is approximately �9%RH for the time
period 2001–2002. Despite the bias, the two data sets
correlate quite well. The standard deviation is approxi-
mately 6%RH and the correlation coefficient above 0.8.
The exact numbers can be found in Table 3.
[62] Jackson and Bates [2001] describe a slightly dif-

ferent algorithm to derive HIRS UTH. We compared
AMSU UTH to that data set also, but the result is very
similar. The dry bias of that HIRS data set against AMSU
is slightly smaller (approximately 7%RH), but the standard
deviation associated with the mean difference is somewhat

Figure 6. AMSU-B Channel 18 Jacobian peak altitude
calculated with the Atmospheric Radiative Transfer Simu-
lator (ARTS) from Lindenberg radiosonde data for 2001–
2002. The ‘‘noisy’’ line shows the time evolution of the
individual radiosonde measurements. The heavy line shows
the same, but smoothed with a 30-d boxcar filter, in order to
bring out the seasonal cycle more clearly. Thin lines above
and below the heavy line show the standard deviation of the
individual measurements, relative to the smoothed heavy
line.

Figure 7. A comparison of the gridded AMSU UTH data to gridded HIRS UTH data by Soden and Bretherton [1996].
Compared is the mean field for the time period 2001–2002. Top: AMSU UTH. Second from top: HIRS UTH, grid cells
where data for one or more months are missing are marked in black. Third from top: Difference (HIRS-AMSU) in percent
RH. Bottom: Relative difference (HIRS-AMSU)/AMSU in percent.
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Figure 7
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larger (6.2%RH instead of 5.7%RH), and the correlation
coefficient is slightly smaller (see Table 3 for all numbers).
[63] We also did a comparison to global AIRS humidity

profiles for one month of data, January 2003. The radiative
transfer model ARTS was used to simulate AMSU bright-
ness temperatures for the AIRS profiles, which were then
processed by the same algorithm as the AMSU data. Two
different versions of the AIRS profiles were tested, V4
[Tobin et al., 2006] and the new V5, both obtained from the
NASA AIRS homepage at http://daac.gsfc.nasa.gov/AIRS/.
[64] The results of the AIRS comparison are summarized

in Table 3 with the other comparison results. The correlation
between AIRS and AMSU UTH is very high, above 0.9,

with standard deviations around 4%RH. Compared to
AMSU, AIRS V4 has a wet bias of approximately
+2.2%RH. AIRS V5 has a slightly larger wet bias of
approximately +2.6%RH.
[65] Finally, Figure 8 shows a scatterplot of monthly

mean AMSU UTH versus monthly mean high cloud frac-
tion (HFC), estimated from AIRS data [Kahn et al., 2007].
The data used is for the time period 2003–2005. As
expected, high UTH correlates with high HCF, the correla-
tion coefficient between the two data sets is 0.68. This
appears to be consistent with Figure 7a of Soden and Fu
[1995], although they used another index for deep convec-
tive clouds.

4.2. Local Comparisons to Radiosonde Data

[66] A set of RS stations was selected for the comparison.
Selection criteria were coverage of different latitudes, and
data availability. The station names and positions are listed
in Table 4. The table lists also the number of valid sound-
ings from each station for the 2001–2002 comparison time
period. Launches were considered valid if they provided
humidity readings at least up to an altitude corresponding to
a pressure of 200 hPa.
[67] The comparison method was similar to that for the

AIRS data: The radiative transfer model ARTS was used to
simulate AMSU brightness temperatures for the RS profiles,
which were then processed by the same algorithm as the
AMSU data. From these data, monthly mean UTH values
were calculated, along with their standard deviations. This
was compared to the matching grid cell of the gridded
monthly mean AMSU UTH data.
[68] The RS UTH was taken as the reference in the

comparison, despite the fact that there are significant biases
between the UTH data records at different radiosonde

Table 3. Statistics of the Comparison to Other Data for the Time

Period 2001–2002a

Data Set
Mean Diff.,

%RH
Std. Dev.,
%RH

Corr.
Coeff.

Overall HIRS JB – AMSU �6.89 6.22 0.81
Overall HIRS SB – AMSU �8.54 5.70 0.83
Jan 2003 AIRS V5 – AMSU 2.61 3.50 0.96
Jan 2003 AIRS V4 – AMSU 2.22 3.44 0.96
Lerwick AMSU – RS �4.33 1.68 0.87
Lerwick HIRS JB – RS �12.69 5.42 0.37
Lerwick HIRS SB – RS �15.99 4.31 0.43
Lindenberg AMSU – RS 1.56 1.12 0.87
Lindenberg HIRS JB – RS �5.05 4.82 0.14
Lindenberg HIRS SB – RS �7.40 2.96 0.57
Gibraltar AMSU – RS 0.17 1.91 0.94
Gibraltar HIRS JB – RS �4.83 3.81 0.76
Gibraltar HIRS SB – RS �7.29 3.83 0.76
Tenerife AMSU – RS 4.90 2.78 0.92
Tenerife HIRS JB – RS 0.02 3.89 0.83
Tenerife HIRS SB – RS �1.50 4.25 0.79
St. Helena AMSU – RS 1.05 1.73 0.91
St. Helena HIRS JB – RS �1.10 2.39 0.86
St. Helena HIRS SB – RS �1.37 2.25 0.86

aThe AMSU data are those from N16. ‘‘Mean Diff.‘‘ is the mean of the
difference of the given data sets. ‘‘Std. Dev.’’ is the standard deviation of
this difference. ‘‘Corr. Coeff.‘‘ is the correlation coefficient between the
given data sets. The first 2 rows show the overall agreement between HIRS
and AMSU over all 240 � 80 grid cells and all 24 months of the 2 year
intercomparison period. The next two rows show the global comparison to
AIRS version 5 and version 4 humidity profiles for one month, January
2003. The remaining rows show the comparison of both AMSU and HIRS
UTH to radiosonde data in the 2001–2002 time period at the five
comparison sites. (24 monthly values are compared in each case.) ‘‘HIRS
JB’’ is the HIRS data set described by Jackson and Bates [2001], ‘‘HIRS
SB’’ is the HIRS data set described by Soden and Bretherton [1996]. ‘‘RS’’
means radiosonde. For the global comparisons, AMSU is the reference. For
the site comparisons, RS is the reference.

Figure 8. A scatterplot of AMSU UTH versus AIRS high cloud fraction. The straight line is a least
squares fit.

Table 4. Intercomparison Site Locationsa

Name Latitude Longitude #

Lerwick 60.14�N 1.18�W 2479
Lindenberg 52.21�N 14.12�E 2492
Gibraltar 36.15�N 5.35�W 1416
Tenerife 28.46�N 16.26�W 1397
St. Helena 15.93�S 5.67�W 412

a‘‘#’’ is the number of valid radiosonde launches in the 2001–2002 time
period. Valid were launches that provided humidity readings up to at least
200 hPa.
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Figure 9. Continued in Figure 10, see caption there.
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stations, as discussed for example by John and Buehler
[2005].
[69] Comparison results are shown in Figures 9 and 10 as

both time series plots (left column) and scatter diagrams
(right column). The figures show AMSU UTH, as well as
both versions of HIRS UTH, in comparison to the RS data.
[70] The agreement between AMSU and RS data at the

selected locations is generally good, with biases between
�5 and +5%RH, standard deviations below 3%RH, and
correlation coefficients above 0.85. (The exact numbers can
be found in Table 3.) The AMSU UTH has a slight moist
bias against most RS stations, which is consistent with John
and Buehler [2005]. It is also consistent with Turner et al.
[2003], who have reported a radiosonde dry-bias of 5%
(relative difference) against microwave measurements of
column water vapor. That result is for Vaisala RS80-H
radiosonde profiles taken by the Atmospheric Radiation

Measurement (ARM) program. Most likely, the RS data
used in our comparison is also from Vaisala RS80 type
sensors, since they were the prevailing type at the time. We
do not calculate an average bias for all stations here, since
the RS network is not homogeneous and thus such a number
would be misleading.
[71] The HIRS UTH data have a significant dry bias

against most RS stations, which is consistent with the
findings of Soden and Lanzante [1996].
[72] For the station Lindenberg, the variability of the

individual data contributing to the monthly means was also
investigated, in addition to the monthly mean data. For the
radiosondes that is the standard deviation of the approxi-
mately 100 UTH values that contributed to each monthly
mean, for AMSU it is the standard deviation of the UTH
from each individual pixel that fell into that grid cell in the
given month. In both cases (AMSU and radiosonde) this

Figure 10. Figure 9 continued. Comparison of AMSU and HIRS UTH to Radiosonde UTH at the five
comparison sites. Compared are monthly mean UTH values for 2001 and 2002. The left column shows
time series plots, the right column scatter diagrams. In the scatter diagrams, the bold straight line indicates
the diagonal. The other straight lines indicate linear fits, with line styles for the various data sets as in the
time series plots.
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does not change much from one month to the other. The
average value is 14%RH for the radiosonde and 12%RH for
AMSU. We conclude that the variability within each month
is consistent between AMSU and RS.

5. Summary, Conclusions, and Outlook

[73] The purpose of this article is to present and document
a new Upper Tropospheric Humidity (UTH) data set,
derived from operational satellite microwave data. More
specifically, the data set is derived by a simple scaling
method from radiances measured by Channel 18 of the
AMSU-B sensor, at 183.31 ± 1 GHz.
[74] The data set is freely available on our web page. It

consists of monthly maps of UTH on a global 1.5� � 1.5�
grid between the latitudes 60� S and 60� N. The instruments
used so far are the AMSU-B sensors on the NOAA satellites
N15 to N17, which means that the data starts in January
2000. UTH data are available separately for the different
sensors.
[75] The definition and properties of this microwave UTH

product are largely similar to the UTH product from IR data
that has been used by Soden and Bretherton [1993] and
others. However, a key difference is that microwave radi-
ances are less affected by clouds than IR radiances. Thus
microwave data processed with and without cloud filtering
can be regarded as error bounds for the true all-sky UTH
value [Buehler et al., 2007]. The methodology to derive
UTH from radiances has been validated by comparing
AMSU-B measurements to radiosondes [Buehler and John,
2005; John and Buehler, 2005; Buehler et al., 2004].
[76] To give an impression of the new data set, the article

discusses its main statistical properties. The global mean
distribution of UTH in the data set is in good qualitative
agreement with IR UTH climatologies, such as [Soden and
Bretherton, 1996]. The data set also captures the yearly
cycle of UTH, consistently with expectations based on the
known features of the general circulation.
[77] UTHData from different sensors on different satellites

are remarkably consistent, with biases below approximately
4% relative difference and standard deviations of approxi-
mately 7%. UTH from N15 was found to have a persistent
low bias of �2% to �4% relative difference compared to
UTH from N16. UTH from N17 was found to have a drifting
bias compared to UTH from N16, where the drift was from
�1% in August 2002 to +2% in February 2007.
[78] An initial validation of the new data set against IR

satellite data and radiosonde data yielded a slight moist bias
against the radiosonde data (of the order of a few percent,
but strongly varying between RS stations). It also yielded a
significant moist bias against HIRS UTH data (7–9%RH,
depending on HIRS UTH algorithm). Furthermore, it
yielded a modest dry bias against AIRS V4 and V5 data
(less than 3%RH). All these biases are broadly consistent
with expectations based on earlier studies. UTH data
standard deviations are below 3%RH against radiosonde
data, approximately 6%RH against HIRS UTH data, and
approximately 4%RH against AIRS UTH data.
[79] We hope that this data set will be useful for climate

applications. We plan to extend the temporal coverage of the
data set, by processing the older data from the SSM/T-2

instrument on DMSP F11 to F15. That data record starts in
1994, which would give us a 14-year time series of UTH.
[80] Concerning the extension of the time series into the

future, one has to take into account that the AMSU-B
instrument is being replaced by the MHS instrument in
new satellites, starting with N18 and MetOp A. The channel
characteristics of MHS are very similar to AMSU-B, but
unfortunately not identical. According to Kleespies and
Watts [2007], the brightness temperature bias between
AMSU-B and MHS for Channel 18 is approximately 0.1 K,
with a standard deviation of also approximately 0.1 K.
(These numbers are based on radiative transfer simulations
for a diverse atmospheric profile data set.) Uncorrected, this
would introduce approximately 1% relative bias into the
UTH data, as can be seen from equation (1). While this is
small, it would still be better not to use the scaling coef-
ficients for AMSU-B, but do the regression again to derive
new coefficients for MHS. With dedicated scaling coeffi-
cients, the bias between AMSU-B and MHS for the UTH
data should be very small, if both instruments were perfectly
calibrated. Future studies will document the actual bias
between the data sets.
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