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[1] Histograms of precipitable water from radiosondes and zenith neutral delay estimated
by GPS are found at many locations to follow a lognormal distribution. This observation is
consistent with a theoretical expression for precipitable water based on moisture flux.
Two unimodal cases are identified: the traditional lognormal distribution is commonly
found in subtropical and temperate climates while tropical oceanic environments tend to
exhibit a reversed lognormal form. Bimodal cases, formed by combinations of either or
both of these unimodal distributions, are found where seasonal (e.g., monsoons) or
climatic (e.g., El Niño) variations generate distinct precipitable water modes with rapid
transitions between them. This connection with the lognormal distribution suggests a basis
for the parameterization both of precipitable water in climate models as well as of the
delay due to water vapor in atmospheric models used for space geodesy.

Citation: Foster, J., M. Bevis, and W. Raymond (2006), Precipitable water and the lognormal distribution, J. Geophys. Res., 111,

D15102, doi:10.1029/2005JD006731.

1. Introduction

[2] The total column quantity of water vapor overlying a
specific point on or above the Earth’s surface, expressed as
the height of an equivalent column of liquid water, is known
as precipitable water (PW). In the last decade the Global
Positioning System (GPS) has been used to measure PW
with an accuracy comparable to that achieved using radio-
sondes [e.g., Duan et al., 1996; Tregoning et al., 1998;
Gutman and Benjamin, 2001]. The recent appearance of
multiyear time series of PW measurements derived from
continuous GPS networks has prompted a resurgence of
interest in the statistics of PW variability. One of the most
basic properties of an environmental variable is its statistical
distribution. Foster and Bevis [2003] studied the statistical
distribution of PW in Hawaii and found it to be lognormal,
or very nearly so, when variability is considered over a
period of several years. They analyzed PW time series
derived from a network of Global Positioning System
(GPS) receivers based on the Big Island of Hawaii and
from a suite of radiosonde profiles associated with the Lihue
radiosonde station in Kauai.
[3] The geodetic measurement of PW is achieved indi-

rectly. What is estimated directly from the observations
collected at each GPS station is the zenith neutral delay
(ZND) which is a measure of the propagation delay imposed
by the neutral atmosphere on GPS (radio) signals reaching
that station. This delay is expressed or parameterized as the

equivalent excess path length associated with a vertical path
through the atmosphere. A ZND time series is transformed
into a PW time series using measurements of surface
temperature and pressure at each GPS station or by inferring
these quantities using a numerical weather model or via
objective analysis [Bevis et al., 1992]. The ZND can be
decomposed into the zenith hydrostatic delay (ZHD), pro-
portional to the surface pressure [Davis et al., 1985], and the
zenith wet delay (ZWD) which is very nearly proportional
to PW [Bevis et al., 1992, 1994]. Since the temporal
variability of ZND is known to be dominated by the
variability of the ZWD, it is reasonable that Foster and
Bevis [2003] found ZND in Hawaii is also lognormally
distributed, or very nearly so.
[4] The lognormal nature of PW and ZND in Hawaii was

a surprise to many geodesists (including us) who have
typically assumed that PW and ZND have Gaussian statis-
tics (largely for the purposes of computational convenience)
if they have considered the statistical distribution at all.
Also, even though many other meteorological and hydro-
logical quantities (such as rainfall and cloud droplet size)
have been characterized as lognormal, this association
rarely occurs in the literature discussing the climatology
of PW. Most likely this is because in many parts of the
world the empirical probability density function for PW
(and for ZND) is bimodal (or multimodal) or, for some other
reason, has an appearance which is not strongly suggestive
of lognormality. The lognormal character of PW and ZND
in Hawaii is a local but not a global property of these
quantities, but how common is lognormality, and is it
possible that bimodal distributions of PW or ZND represent
combinations of two lognormal populations?
[5] In this paper we use both GPS measurements and

radiosonde measurements to survey the statistical distribu-
tion of PW and ZND in a variety of oceanic and continental
settings. By including GPS measurements in addition to the
direct PW measurements of radiosondes, we are able to
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confirm whether the ZND, the parameter of direct interest to
space geodesists, reflects the same distributions as the PW.
The ZND also provides an independent platform to corrob-
orate the radiosonde results. In addition, the rapid global
expansion of GPS networks means GPS data is available
from many areas that have little or no coverage by tradi-
tional meteorological instruments.

2. Statistical Background

[6] The two continuous probability distributions most
commonly used to describe atmospheric variables are the
normal (N) and lognormal (L) distributions. Rain rate
[Biondini,1976; Sauvageot, 1994], cumulus cloud popula-
tions [López, 1977] and aerosol optical depth [O’Neill et al.,
2000] are all found to have lognormal distributions. Exam-
ining relative humidity in the upper troposphere, Soden and
Bretherton [1993] and Yang and Pierrehumbert [1994] find
several instances of the lognormal distribution. A variate x is
L-distributed if the variate z = log (x) is N-distributed. For a
detailed discussion of L, see Aitchison and Brown [1957];
here we will simply give the equation for the PDF for
variable X distributed according to the two-parameter
L(xjM,s):

1

xs
ffiffiffiffiffiffi
2p

p � exp
� log x

M

� �2
2s2

( )
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where M is the median and s is the geometric standard
deviation (GSD). The geometric standard deviation (GSD)
should not be confused with the more widely used
arithmetic standard deviation (ASD), usually referred to
simply as the standard deviation, which is most commonly
associated with the N-distribution. The population mean is

M exp
s2

2

� �
and the population variance is M2ex-

p(s2)(exp(s2) � 1) (Figure 1). The maximum likelihood
estimators of M and s are calculated using the logarithm of
the data set: M is estimated by the exponential of its mean
and s by its (arithmetic) standard deviation. More

sophisticated estimation methods may be necessary for data
that are sparse and/or noisy.
[7] A slightly more general version of L is the three-

parameter distribution L(xjM, s, t). Here an extra term t is
included as a ‘‘threshold’’ parameter. The threshold param-
eter allows the distribution to describe the situation where
the variable has a nonzero lower bound. The threshold
simply acts to translate the PDF along the x axis
(Figure 1). The PDF for the three-parameter distribution is
given by equation (1) above substituting the variate with x0

= x � t. The PDF is now defined for 0 < x � t < 1 and the
locations of the median and mean are shifted by t.
[8] By adopting a similar approach, it is possible to

generate a ‘‘reverse’’ lognormal distribution. In the reverse
case, the shape of the distribution is a mirror image of the
normal form (Figure 1). Now the distribution is bounded by
an upper value t with the long tail tending toward zero (or
�1). The reverse lognormal case is described by defining a
new variate x0 = t � x which is distributed according to the
two-parameter distribution.

3. Data

[9] We use radiosonde profiles retrieved from the National
Climatic Data Center (NCDC) CARDS (now IGRA)
database and the Forecast Systems Laboratory (FSL).
These profiles cover the period from 1973 through 2002
(see Table 1 for site-specific radiosonde model details) and
report surface, standard, and significant levels. Not all sites
have complete data coverage for this time period, but we
select for this paper only sites for which there exist enough
data (several thousand profiles) to allow us to examine the
gross statistics of the precipitable water distribution. The
temperature and dew point profiles were transformed to
precipitable water using the equations from Buck [1981].
In order to examine the height variations the cumulative
precipitable water profiles were all interpolated to a common
set of elevations. Examining the amount of precipitable water
in the last height interval of each profile allowed us to
identify and exclude profiles that had a significant percentage
of their total observed precipitable water in the final layer
and so were considered to have terminated prematurely.
[10] The various corrections to the profiles due to model/

instrument type that are necessary for detailed intercompar-
ison [e.g., Gaffen and Elliott, 1993; Wang et al., 2002] were
not made for this study. It is well known that there are biases
in the relative humidity, and to a lesser degree temperature
measurements between the various radiosonde models.
These biases are generally most pronounced in cold, dry
conditions [Elliott et al., 2002; Miloshevich et al., 2006],
however, and as the bulk of the water vapor is in the lower
troposphere, the impact of relative humidity biases are
expected to be relatively small for the PW estimates for our
sites, except perhaps the highest-latitude sites in winter
months. Any such biases will introduce small errors into
our estimates of the lognormal parameters. As we are most
concerned with general patterns and gross long-term statis-
tical analyses, however, the conclusions we draw will not
significantly affected by these errors.
[11] The International GPS Service (IGS) provides data

from a global network of GPS stations. One of the primary
parameters estimated during geodetic processing of GPS

Figure 1. Family of theoretical lognormal probability
distribution functions illustrating the three-parameter form
of the lognormal and the reverse-lognormal.
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data is the Zenith Neutral Delay (ZND). Although, if
surface meteorological data is available, the ZND can be
further reduced to a direct estimate of precipitable water
[Bevis et al., 1992], most of the time the variation in ZND is
almost entirely due to variation in PW and so the ZND can
serve as a good proxy for PW [Bevis et al., 1992]. During
very dry conditions at high latitudes, the hydrostatic delay
component of the ZND can experience variations that
approach those due the PW. Caution should therefore be
used in interpreting details in histograms of ZND from sites
and times where these conditions apply. In the work of
Foster and Bevis [2003] the ZND for GPS stations in
Hawaii is found to closely mirror the lognormal distribution
observed for the PW at these sites. As ZND is the parameter
directly estimated in GPS positioning, and as the availability
of surface meteorological observations at GPS sites is
relatively sparse, we choose in this paper to examine the
ZND rather than restricting ourselves to PW and those GPS
sites for which reliable auxiliary meteorological data exist.
The IGS tropospheric combination product provides ZND
estimates every 2 hours for 1997 through 2002. Obvious
outliers were removed from the final collated ZND data
sets.

4. Results

[12] We examine first the gross statistical distributions of
PW and ZND, taking no account of seasonality. Although it
is expected that seasonal variations will strongly influence
PW and ZND at most sites outside the tropics it is of some
interest to investigate the histograms of the entire time
series. If the time series is long enough that any annual
cycles are well averaged, and pressure and temperature can
each be reasonably approximated by a mean and variance
then it can be inferred that any strong departure from a
lognormal form indicates that the source regions for the
moisture are strongly segregated and the regions are de-
scribed by different means and variances. It is also of some
interest to examine whether a single parameterization of PW
can be adopted in models for some areas, without the need
to adopt a seasonally varying set of parameters.
[13] We find that the statistical distributions of PW or

ZND from many sites worldwide can be divided into three
basic categories; lognormal, reverse-lognormal, and bimod-
al. The bimodal category can be further divided into three

subcategories; a bimodal-I type is constituted by two
lognormal distributions, bimodal-II has both a lognormal
and a reverse-lognormal distribution, while bimodal-III
comprises two reverse-lognormal distributions. These cate-
gories are most easily defined through example, so we
present here data from sites that best illustrate each category.

4.1. Lognormal Category

[14] Foster and Bevis [2003] have already shown that
sites in Hawaii fall into the first, lognormal, category.
Investigating contrasting climatic regimes, we find other
sites that exhibit an approximate lognormal form. The GPS
station BAHR, located near sea level in Bahrain (Figure 2),
is in an arid subtropical coastal setting. The histogram of the
5 years of ZND estimates (Figure 3) clearly closely approx-
imates the typical lognormal form with a rapid rise from the
lower values and an elongated upper tail.
[15] Mount Pleasant (WMO 88889) in the Falkland

Islands is a high-latitude site in the southern Atlantic. The
PW distributions from the radiosonde profiles (Figure 4)
show that the median falls quickly for the first kilometer
before changing to decline more slowly above this level.
Like all the radiosonde sites examined in this study,
including those with reverse lognormal distributions, the
profile of median values can be closely matched by an
exponential function, in agreement with the common as-
sumption that PW falls off roughly exponentially with
height. The GSD starts at 	0.4 and increases almost
linearly. The increasing GSD reflects the growing skewness
of the distribution (as the skewness is also dependent on M
this is not necessarily strictly true in general), even though
the overall width of the histograms is decreasing.

4.2. Reverse-Lognormal Category

[16] The second category we identify is the ‘‘reverse-
lognormal.’’ The distributions for sites in this category have
a typical lognormal shape except that it is reversed, with the
long tail on the lower end of the distribution and the rapid
drop to zero probability at the upper end. Occurrences for
this type of distribution appear to be more geographically/
climatologically limited. Two of the clearest examples are
shown in Figures 5 and 6 with radiosonde profiles from
Koror in the Republic of Palau (WMO 91408) and GPS
ZND estimates from NUSA, Solomon Islands. The surface
distribution for the radiosonde station shows a gentle rise in

Table 1. Radiosonde Models

Site WMO Profile Dates Effective Date Radiosonde Modela

Mount Pleasant 88889 1989–2002 1989 VAISALA RS80
Koror 91376 1973–2002 1973 Unknown

1986 VIZ (Generic)
1988 VIZ B
1995 VAISALA RS80

Niamey 61052 1973–2002 1973 Unknown
1982 MESURAL FMO 1950A
1995 VAISALA RS80

Whitehorse 71964 1973–2002 1973 U.S.W.B. ELECTRONIC(?)
1988 VIZ -SANGAMO
1988 VIZ B
1988 VAISALA (Generic)

Funafuti 91643 1973–2002 1973 VIZ (Generic)?
1993 VAISALA RS80

aFrom Gaffen [1996].
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occurrence for PW values above 	20 mm rising to a peak
occurrence at 	50–55 mm before dropping rapidly to zero
at 	70 mm. The ZND at NUSA shows a similar pattern but
shifted to between 	2450 and 	2725 mm of delay. The
radiosonde distributions retain the reverse-lognormal form
with increasing elevation but shift to lower values. The
GSD increases almost linearly from 	0.15 to >0.3 while the
median declines more like a weak exponential function. At
higher elevations the profiles become noisier and fit less
well to the simple reverse-lognormal curves.

4.3. Bimodal Category

[17] In the final category the distributions are bimodal.
Zhang et al. [2003] find that bimodality of water vapor is
common in the tropical upper troposphere and examine its
implications for the drying and mixing of air parcels. They
use a conservative test for bimodality as they are unable to
make any prior assumption for the expected distribution of
water vapor in their analysis. Perhaps as a consequence of
this, they do not find bimodality in the lower troposphere.
As we have reason to expect that, over the long term, water
vapor should in fact approximate a lognormal distribution
(see Appendix A), we can examine distributions that are
clearly not approaching a simple lognormal form from this

perspective. We believe that a large fraction of locations
exhibit a bimodal type of distribution; however, in many
cases the two (or perhaps more) modes have such similar
parameters that it is difficult to distinguish them.
[18] Niamey, Niger, is an example of a well-defined

bimodal distribution (Figure 7). The lower component is
most easily modeled with a standard lognormal distribution.
The upper mode is more ambiguous. Either a lognormal
(indicating a type I bimodal) or a reverse-lognormal (i.e., a
type II bimodal) distribution might reasonably fit the profile

Figure 2. Location map of radiosonde and GPS sites used in this study.

Figure 3. Histogram of zenith neutral delay estimates
from GPS site BAHR, Bahrain. M, s, and t for the curve
fitted to the histogram are 2417.0, 0.22, and 2222.0,
respectively.

Figure 4. Histograms of precipitable water at different
elevations from RAOBS launches at WMO 88889: Mount
Pleasant, Falkland Islands. M and s for the curves fitted to
each of the six histograms are 9.7, 0.438; 8.3, 0.459; 5.9,
0.60; 3.3, 0.80; 1.8, 0.90; 1.0, 1.0.
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as the overlap between the modes obscures the telltale
asymmetry that would distinguish between them. The two
modes remain distinct up to 	2000 m beyond which they
become increasingly merged and the combination simply
resembles a single lognormal distribution.
[19] The GPS station LHAS in Lhasa, Tibet also shows a

clear bimodal distribution of ZND (Figure 8). In this case
the rapid drop to zero probability on the upper end of the
histogram suggests that this is most likely a type II bimodal,
comprising a lower lognormal and an upper reverse-lognor-
mal mode. The modes themselves are clearly (Figure 8b)
related to the monsoonal seasonality at this site.
[20] An example of a type III bimodal is the GPS site

GALA in the Galapagos Islands (Figure 9). Here the
bimodality is not immediately obvious; indeed, at first
glance it might even be thought to be normal/Gaussian.
Examining the time series for this site, however, highlights
the dramatic influence of El Niño with PW strongly
elevated as the dropping of the westerly winds leads to a
warming of the surrounding ocean and much increased
convection and rainfall. The histogram of ZND estimates
for all times excluding the 1997–1998 El Niño (Figure 9b)
suggests a simple reverse lognormal distribution. The his-
togram during the El Niño episode (Figure 9c) is less well
defined as it is a relatively short time period and a limited

Figure 5. Histograms of precipitable water at different
elevations from RAOBS launches at WMO 91376: Koror,
Republic of Palau. M, s, and t for the fitted reverse-
lognormal curves are 53.63, 0.290, 80.0; 46.09, 0.309, 70.0;
35.59, 0.291, 60.0; 23.08, 0.280, 45.0; 14.61, 0.299, 30.0;
8.90, 0.299, 20.0.

Figure 6. Histogram of zenith neutral delay estimates
from GPS site NUSA, Solomon Islands. M, s, and t for the
fitted reverse-lognormal curve are 2647.5, 0.33, and 2745.0,
respectively.

Figure 7. Histograms of precipitable water at different
elevations from RAOBS launches at WMO 61052: Niamey,
Niger. M and s for the fitted lognormal (lower mode) curves
are 14.0, 0.475; 13.25, 0.480; 11.5, 0.470; 9.25, 0.480; 6.65,
0.565; 4.0, 0.600. M and s for the fitted lognormal (upper
mode) curves are 39.0, 0.175; 37.0, 0.180; 29.0, 0.215;
19.0, 0.250; 12.0, 0.275; 8.0, 0.275.
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number of samples, but it appears once again to be a
reverse-lognormal.

4.4. Seasonal Variability

[21] The effect of seasonal periodicity is studied by
examining histograms generated by stacking observations
by month of year. For the sites in this study, the effect
appears to vary with climatic zone. Bahrain and the west
Pacific sites, for example, with their limited seasonality,
have similar lognormal parameters for all months. White-
horse, by contrast, appears lognormal at two different
timescales. The histogram of its full time series resembles
that of Mount Pleasant and in addition the months also
appear individually lognormal (Figure 10), with large var-
iations in the lognormal parameters. This makes it particu-
larly notable that the aggregate histogram also appears
lognormal despite the variability of the monthly distribu-
tions. It seems that in the aggregate case the lognormal form
derives from the seasonal cycle itself. Plotting the two
lognormal parameters M and s for each of Whitehorse’s
monthly distributions against each other reveals an interest-
ing seasonal pattern. The winter months cluster with low
median and high GSD, and as the summer approaches the
median increases while the GSD drops. After the peak of
summer the trend returns to the winter values; however,
though it follows a similar trend, it has a slightly higher
GSD for a given median value. This higher GSD indicates
that although PW for these months has the same expected
value as earlier in the year, it has higher variance. The fit of
the lognormal curves to the histograms is noticeably weaker
during the dry winter months. It is possible that this is
simply a case where the assumption of approximate log-
normality is less valid or that the monthly timescale is
inappropriate. Examining ZND estimates from the GPS site
at Whitehorse, however, reveals a much closer fit between
the histograms and the derived lognormal curves. This
suggests an alternate explanation that the RAOBS data is
poor, with a dry bias, for some, or all, of the winter months
in the data record. Whitehorse was using VIZ model radio-
sondes during most of the period for which we have data
(Table 1). VIZ radiosondes are known to perform very
poorly during dry and cold conditions [Elliott et al., 2002;
Miloshevich et al., 2006], suggesting that the details of the
winter results for Whitehorse be treated with caution. These
misfits suggest that a divergence from a lognormal form
might be used as a indicator of potential problems in a data
set.
[22] Monthly histograms for TVLU illustrate the reverse-

lognormal case (Figure 11). Here in the tropics there is very
little seasonal variation: the austral winter months are

Figure 8. (a) Histogram of zenith neutral delay estimates
from GPS site LHAS, Lhasa, Tibet. M, s, and t for the fitted
lognormal and reverse-lognormal curves are 1515.0, 0.325,
1440.0, and 1605, 0.50, 1665.0 respectively. (b) Histograms
by month of year. June, July, August, and September are all
fitted with reverse-lognormal curves with t = 1665. All
other months are fitted with lognormal curves with t = 1440.
(c) Scatterplot of the parameters for the fitted lognormal
curves for each month.
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slightly drier but the variation of the lognormal parameters
is small and any trend is poorly defined.
[23] Although GALA, as noted above, derives its bimod-

ality from a climatic event, the source of the bimodality for
the other sites is typically the seasonality. This is illustrated
by the monthly histograms from LHAS (Figure 8) which
show the winter and summer months occupying limited
ranges with a rapid transition between them. This is con-
firmed by the plot of GSD and median values showing the
clustering into two regions. As the onset and termination of
the monsoons is quite variable from year to year, the
histograms for those months when the onsets and termina-
tions typically occur may be less well defined as they

constitute a mixture of the modes as well as the transition
periods themselves.

5. Discussion

[24] The time period over which observations need to be
collected in order for the distribution to be approximately
lognormal will depend on the timescales of perturbations in
the data and especially on any intrinsic periodicities that
must be averaged. The timescales for the principle non-
periodic perturbations are those of synoptic and climatic
events. Similarly, the two main periodicities are the diurnal
and annual cycles. Depending on the time window over

Figure 9. Histogram of zenith neutral delay estimates
from GPS site GALA, Galapagos Islands. (a) Composite
histogram. (b) Histogram for ZND estimates for all periods
excluding the 1997–1998 El Niño. M, s, and t for the fitted
reverse-lognormal curve are 2562.0, 0.16, 2800.0.
(c) Histogram for ZND estimates during the 1997–1998
El Niño. M, s, and t for the fitted reverse-lognormal curve
are 2665.0, 0.25, 2800.0.

Figure 10. (a) Histograms of precipitable water for
Whitehorse, Canada (WMO 71964), for each month of
the year. (b) Scatter plot of the parameters for the fitted
lognormal curves for each month.
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which observations are collected, the effects of these cycles
and perturbations on the PDF may be very different. We
have shown that GALA is well modeled as a bimodal PDF
with modes for the El Niño and non-El Niño periods. In our
time series we have only the 1997–1998 El Niño event.
Were we to have sampled a period between El Niños, we
might have concluded that it was a simple reverse-lognor-
mal. Equally, it is possible that if we had an entire century’s
worth of observations, covering multiple El Niño events of
varying degrees of strength, the PDF might again appear to
be a simple reverse lognormal. There is a potential conflict
therefore between the period of time needed to accumulate

enough observations in order to satisfy the asymptotic
tendency toward the lognormal distribution and the need
for these observations to sample a statistically uniform
source population. It is possible that both conditions are
satisfied only over certain periods or time windows for a
given data set. The characteristic periods for various mete-
orologic and climatological phenomena may place bounds
on the intervals over which (simple) lognormality is ob-
served. Similarly, the sampling interval(s) of the data being
examined may also introduce intrinsic limits on the periods
over which lognormality can be reliably identified or
deduced.
[25] One possible interpretation of a simple lognormal

form for a PW time series is that the source region(s) for the
observed moisture is(are) effectively mixed over that time
period (for further discussion, see Appendix A), as this
ensures that one mean and variance can be used to describe
the region(s). If, alternatively, the seasonality, for example,
involves a distinct change in source region for moisture, and
these source regions are effectively unmixed over the time
periods of the observations, although each would be
expected generate a lognormal distribution, if they have
distinct means and variances the distributions will have
different characteristic parameters. This will naturally lead
to the bimodal (type I) distribution This should be most
clearly illustrated at locations that experience strong mon-
soon seasons with abrupt onsets and terminations, and
Niamey and Lhasa (Figures 9 and 10) are indeed examples
of this.
[26] Much more surprising than our observation that the

many sites have a lognormal distribution of PW is the
occurrence of the reverse-lognormal distribution. We are
unable to find any previous mention of this form of
distribution occurring and, from existing theory (see equa-
tion (A1)), it is difficult to understand its connection to
moisture flux. One possible qualitative explanation for the
occurrence of the reverse-lognormal derives from consider-
ation of the conditions that lead to the genesis of the
lognormal. A common conceptual description for the for-
mation of a lognormal distribution is a system where the
magnitude of perturbations of a parameter are proportional
to the instantaneous magnitudes of the parameter being
perturbed. That is, the greater the current value of PW,
say, the greater the incremental change it would be expected
to undergo. For the reverse-lognormal the converse must
hold: the lower the PW, the greater the expected incremental
change.
[27] An interesting related question concerns the physical

interpretation of the threshold value needed to describe
the reverse-lognormal. Whereas the two-parameter form of
the lognormal distribution appears sufficient to describe the
simple lognormal form of the PW in every case we have
examined, the reverse-lognormal requires a nonzero value
for t. We have simultaneously solved for t [Iwase and
Kanefuji, 1994] in our fits for the single reverse-lognormal
cases, but when modeling multiple curves we have attemp-
ted to restrict t to a common value (e.g., GALA, Figure 9).
This reflects our belief that t probably represents a real
physical limit for the atmosphere at each site. For the two
parameter case where, by definition t = 0, this limit is
simply a completely dehydrated atmosphere. The most
obvious interpretation for t in the reverse-lognormal situa-

Figure 11. (a) Histograms of precipitable water for
Funafuti, Tuvalu (WMO 91643), for each month of the
year with fitted reverse-lognormal curves. All curves have
t = 80. (b) Scatterplot of the parameters for the fitted
lognormal curves for each month.
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tion is that it corresponds to some maximum carrying
capacity of the atmosphere: complete saturation of the
atmospheric column up to some characteristic level for
example. We attempted to find a general pattern for t by
investigating the relationship between the t values estimated
for the Funafuti radiosonde profiles and the column height
of saturated air needed to produce those values of PW. The
estimated value of t for the surface histogram corresponded
to a column height of 4 km, given a physically reasonable
surface temperature of 30�C; however, the t estimates for
the higher elevation histograms required the top of the
saturated column to be progressively higher, and so a
physical interpretation for t remains elusive.

6. Conclusions

[28] Sites from various different climatic regimes from
around the world illustrate that histograms of long time
series of precipitable water, and, by extension, atmospheric
delay, often closely approximate a lognormal distribution.
This observation is supported by a theoretical study of
moisture flux which suggests that, particularly for climato-
logically averaged data, one would expect observations of
precipitable water to tend toward a lognormal distribution.
[29] The reverse-lognormal observed for PW (radio-

sondes) and ZND (GPS) in tropical, mostly oceanic, loca-
tions was not anticipated by any theory known to us.
Whereas L is bounded below for PW (PW = 0), Lrev is
bounded above. The formation of this unusual form of the
lognormal distribution, and the nature of its upper bound is
not well understood.
[30] The probability distribution functions for precipitable

water can be categorized into three common forms: lognor-
mal, reverse lognormal, and bimodal. The bimodal category
can be further subdivided into three possible combinations:
type I has lognormal + lognormal, type II has lognormal +
reverse-lognormal, and type III has reverse-lognormal com-
ponents. Reverse-lognormal distributions appear to be re-
stricted to areas that experience almost total saturation,
typically oceanic equatorial zones. Bimodality is most
obvious where seasonality is both pronounced and distinct,
such as some monsoonal zones. For most of the rest of the
world the simple lognormal seems to be common, even
where seasonality is quite pronounced, although it is pos-
sible that a multimodal description might be more appro-
priate for many sites.
[31] The distribution of water vapor and clouds is one of

the key issues for climate models, and the refraction of radio
waves due to water vapor is one of the primary sources of
noise in space geodetic measurements. Recognizing that
precipitable water and the delay it induces has a lognormal
distribution has implications for how it might best be
parameterized. As the lognormal distribution is asymmetric,
constraints applied to lognormal parameters need to reflect
this. One simple approach would be to parameterize pre-
cipitable water (or its delay) using the logarithm of precip-
itable water as this is normally distributed and so can be
easily accommodated by the common least-squares ap-
proach. The expectation of lognormality might also provide
a useful quality check both for measured and modeled
precipitable water. Lognormality also affects the expect-
ations for extreme events, with the skewness of the distri-

bution predicting extremely moist conditions as much more
likely than would be expected if precipitable water were
normally distributed.

Appendix A: Theoretical Derivation of
Precipitable Water Lognormality

[32] Working from first principles, Raymond [2000a]
derives an equation for moisture transport in terms of
relative humidity and finds that the solution to that (differ-
ential) equation is of the form:

RH tð Þ ¼ RH 0ð Þ

� exp �
Z t

t0

6889:0952
T

� 5:31
� �

d lnTð Þ
dt

þ d lnpð Þ
dt

h i
1� es

p

� �
8<
:

9=
;dt

8<
:

9=
;;

ðA1Þ

where the solution has been rewritten from Raymond to
emphasize that it refers to the time domain and to clarify the
terms. T and p are temperature and pressure and es is
the saturation vapor pressure. The equation describes the
changes in relative humidity a parcel of air experiences as it
is advected through changing pressure and temperature
fields. This solution for moisture transport should asympto-
tically approach a lognormal distribution under both
adiabatic and diabatic conditions provided the integrand
arguments are sampled from statistical populations with the
same expected value and variance and provided the
exponent asymptotically approaches a normal distribution
[Raymond, 2000a].
[33] The exponent describes the time integrated perturba-

tions about a mean or equilibrium condition for moisture as
it is transported through the temperature and pressure fields.
Natural perturbations about equilibrium conditions are
known generally to tend toward a normal (Gaussian)
distribution. It is possible that external forcing involving
strong latent and sensible heating effects during diabatic
activity might disrupt any limited time trend toward a
Gaussian; however, long time series that contain many
of these cycles may still converge to a near Gaussian
distribution.
[34] The integrand is a complex function of pressure and

temperature as the saturation vapor pressure depends only
on T. In order for each of the components to be approxi-
mately described by a single expected value and variance,
the timescale of any periodicities and excursions in the
pressure and temperature fields must be either significantly
longer or shorter than the time period being studied or
the amplitude of these signals should be small relative to the
variance so that they can be approximated as part of the
variance. Although (A1) was derived in a Lagrangian frame-
work, it should apply equally well to Eulerian measurements
as they are sampling spatial differences from the same
population over the time period. This should hold true
provided that the source of the air parcels being measured
and their transport history satisfy the same constraints
above.
[35] Equation (A1) provides a theoretical grounding for

the observations of lognormal relative humidity and is no
doubt also connected to the observations of lognormality in
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the other moisture related parameters. This result is quali-
tatively supported by the form of the Clausius-Clapeyron
equation describing saturation water vapor pressure based
on thermodynamic principals. The exponential of tempera-
ture in this equation is also suggestive that moisture is likely
to take a lognormal form.
[36] In order to investigate the expected theoretical

distribution for precipitable water (PW), we need to extend
the derivation from this Lagrangian time evolution of
relative humidity and consider the column integrated
moisture (PW). We start with the definition of PW
[Haltiner, 1957]:

PW pð Þ ¼ 1

g

Z p

ptop

qdp: ðA2Þ

Here PW is proportional the integral of the mixing ratio q
over the pressure interval ptop (top of the atmosphere or
interval) to p and g is the acceleration of gravity. To assess
(A2) and determine the expected vertical variation of q, we
can use the modified power law for q [Raymond, 2000b],
which in simplified form becomes

q pð Þ � q0
p

p0

� �lþa

; ðA3Þ

where q0 = q( p0, T0) and T0 = T( p0) where p0 is the

reference pressure level. The parameter l = b(
6889:0952

T0
�

5.31) � 1.0, and b is defined by the relationship
between pressure and temperature which approximately

satisfies (
p

p0
)b = (

T

T0
). The exponent a is introduced to

compensate for unknowns is the relative humidity. The
parameter b varies both spatially and temporally and, as it is
weakly dependent on temperature, some prior knowledge of
the vertical temperature profile is needed in order to
numerically evaluate (A3). Here a also needs to be
estimated in order to numerically evaluate the function.
This requires knowing the relative humidity at ptop, the top
of the column; otherwise one can use Smith’s [1966] power
law formulation for climatological PW estimates given the
surface dew point.
[37] This power law relationship describes vertical pro-

files well in cases where inversions and isolated dry or
moist layers are not pervasive [Raymond, 2000b]. Although
these features are relatively common, they are quickly
suppressed in time averaged climatological profiles.
[38] Substituting (A3) into (A2) and integrating over the

pressure interval, we get

PW pð Þ �
q0 plþaþ1 � plþaþ1

top

� �
gplþa

0 lþ aþ 1ð Þ
: ðA4Þ

Expanding q0 [Haltiner, 1957] in terms of relative humidity
RH0 and saturation vapor pressure es0, where RH0 =
RH(p0,T0) and es0 = es(T0), namely

q0 �
0:622RH0es0

p0
; ðA5Þ

allows us to relate PW to RH0, es0, and
p

p0
directly:

PW pð Þ � 0:622RH0es0

g lþ aþ 1ð Þ
p

p0

� �lþaþ1

� ptop

p0

� �lþaþ1
" #

: ðA6Þ

Because RH0 and es0 are not independent, PW is strongly
dependent upon RH0. Consequently, this then implies that if
RH is distributed lognormally then PW should also be
distributed lognormally.
[39] Looking at the detail of (A6) indicates that the

vertical variation of PW is nearly proportional to (
p

p0
)l+a+1.

Typical values for b and a are 	3 and 	±1 respectively,
indicating that PW should generally decline rapidly with
height as a power of the pressure ratio. For small pressure
intervals

p

p0

� �lþaþ1

� 1þ lþ aþ 1ð Þ p� p0ð Þ
p0

þ . . . ðA7Þ

and is linear in (p � p0) for p � p0. The hydrostatic
approximation then implies that variation of PW with height
is also approximately linear provided changes in pressure
are small.
[40] Scatter about a lognormal distribution may be en-

hanced with height since spatial and temporal variations for
b are more pronounced in the upper half of the troposphere
[Raymond, 2000b]. Additionally, a adds to this variability
since it ranges between positive and negative values with a
magnitude slightly greater than unity.
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